Detecting disease-related biomarkers is of great significance for disease diagnosis and therapy. In this work, we develop an ultrasensitive surface-enhanced Raman scattering (SERS) biosensor for the detection of an acute myocardial infarction-related miRNA (miR-133a) using composition-adjustable hollow Ag/Au nanosphere-based SERS probes coupled with the target-catalyzed hairpin assembly (CHA) strategy. Bimetallic probes displaying high stability and a strong surface plasmon resonance effect were synthesized with a controllable ratio of silver and gold by a galvanic replacement method and then captured by a duplex linker produced in the CHA process to accomplish signal amplification. In this way, the target miR-133a can be detected in a wide linear range with a detection limit of 0.306 fM and high selectivity over other miRNAs expressed in human hearts. Practical applications in human blood samples reveal the strong anti-interference ability and ideal sensitivity of our developed sensing platform in physiological environments, benefiting its potential biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.8b03067 | DOI Listing |
Anal Chem
April 2023
The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.
Ultra-sensitive detection of cancer-related biomarkers in serum is of great significance for early diagnosis, treatment, prognosis, and staging of cancer. In this work, we proposed a surface-enhanced Raman scattering and fluorescence (SERS/FL) dual-mode biosensor for hepatocellular carcinoma (HCC)-related miRNA (miR-224) detection using the composition of well-arranged Au nanoarrays (Au NAs) substrate coupled with the target-catalyzed hairpin assembly (CHA) strategy. The hot spots densely and uniformly distributed on the Au array offers considerably enhanced and reproducible SERS signals, along with their wide and open surface to facilitate miR-224 adsorption.
View Article and Find Full Text PDFAnal Chim Acta
July 2020
Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China; College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China. Electronic address:
DNA nanomaterials are reliable and powerful tools in the development of a variety of biosensors owing to their notable self-assembly ability and precise recognition capability. Here, we propose a DNA nanomaterial-based system for the dual-amplified electrochemical sensing of circulating microRNAs by a coupled cascade of catalyzed hairpin assembly (CHA) and three-dimensional (3D) DNA nanonet structure. In the target-assisted CHA process, the stable hairpin structures H1 and H2 act as probes for the recognition and recycling of circulating microRNAs, leading to the formation of abundant H1-H2 duplexes with tails.
View Article and Find Full Text PDFChem Commun (Camb)
August 2019
Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
Here, with the target-catalyzed hairpin assembly generated dsDNA (HP1-HP2) to synchronously control the departure of quencher ferrocene and approach of sensitizer methylene blue, a distance-controllable multiple signal amplification based photoelectrochemical biosensor was proposed for MiRNA-21 assay.
View Article and Find Full Text PDFAnal Chem
October 2018
Department of Chemistry , University of Science & Technology of China, Hefei , Anhui 230026 , China.
Detecting disease-related biomarkers is of great significance for disease diagnosis and therapy. In this work, we develop an ultrasensitive surface-enhanced Raman scattering (SERS) biosensor for the detection of an acute myocardial infarction-related miRNA (miR-133a) using composition-adjustable hollow Ag/Au nanosphere-based SERS probes coupled with the target-catalyzed hairpin assembly (CHA) strategy. Bimetallic probes displaying high stability and a strong surface plasmon resonance effect were synthesized with a controllable ratio of silver and gold by a galvanic replacement method and then captured by a duplex linker produced in the CHA process to accomplish signal amplification.
View Article and Find Full Text PDFBiosens Bioelectron
February 2018
College of Chemistry, Jilin University, Changchun 130021, China.
A new near-infrared electrochemiluminescence resonance energy transfer (NECL-RET) strategy for enzyme-free amplified DNA detection was designed. In this strategy, the quaternary Cu-Zn-In-S nanocrystals (NCs) were applied as the ECL donor and gold nanostars (AuNSs) were used as the acceptor. The flowerlike MoS/GO/o-MWNTs nanostructure was synthesized and used as an outstanding substrate to immobilize the NCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!