Background: Ischaemia-reperfusion injury (IRI) is associated with programmed cell death that promotes inflammation and organ dysfunction. Necroptosis is mediated by members of receptor interacting protein kinases (RIPK1/3). Inhibition of RIPK1/3 provides a pro-survival benefit in kidney IRI. Caspase-8 initiates apoptosis and contributes to IRI. We studied whether inhibiting both RIPK3 and caspase-8 would provide an additional benefit in kidney IRI.
Methods: A clamp was applied to the left kidney pedicle for 45 min followed by right kidney nephrectomy. Kidney and serum from wild type, RIPK3 , and RIPK3 caspase-8 double knockout (DKO) mice were collected post-IRI for assessment of injury. Tubular epithelial cells (TEC) isolated from wild type, RIPK3 , and DKO mice were treated with interferons-γ and interleukin-1β to induce apoptotic death.
Results: Kidney IRI of DKO mice did not show improvement over RIPK3 mice. We have found that DKO triggered 'intrinsic' apoptosis in TEC in response to interleukin-1β and interferons-γ. Up-regulation of the B-cell lymphoma 2 (Bcl-2)-associated death promoter, the Bcl-2-homologous antagonist killer and Bcl-2-associated X protein and enhanced activation of caspase-3 and 9 were found in DKO TEC. TEC infected with Murine cytomegalovirus that encodes multiple cell death inhibitors resist to death.
Conclusion: We show that the deletion of both RIPK3 and caspase-8 does not provide additive benefit in IRI or TEC death and may enhance injury by up-regulation of intrinsic apoptosis. This suggests blocking multiple death pathways may be required for the prevention of kidney IRI clinically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706480 | PMC |
http://dx.doi.org/10.1111/nep.13487 | DOI Listing |
Mol Immunol
January 2025
Department of Urology, Renmin Hospital of Wuhan University. Wuhan, Hubei Province, PR China. Electronic address:
Background: Renal ischemia-reperfusion injury (IRI) is a prevailing manifestation of acute kidney injury (AKI) with limited treatment options. TRIM44 has emerged as a possible target for treatment due to its regulatory function in inflammatory pathways.
Methods: In vivo and in vitro models were employed to ascertain the TRIM44 impact on renal IRI.
FASEB J
January 2025
Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China.
Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Clinical Studies Group, Randox Laboratories Ltd, Crumlin, United Kingdom.
Background: In patients undergoing orthopaedic trauma surgery, acute kidney injury (AKI) can develop post-operatively and is a major cause of increased mortality and hospital stay time. Development of AKI is associated with three main processes: inflammation, ischaemia-reperfusion injury (IRI) and hypoperfusion. In this study, we investigated whether ratios of urine and blood anti-inflammatory biomarkers and biomarkers of hypoperfusion, IRI and inflammation are elevated in patients who develop post-trauma orthopaedic surgery acute kidney injury (PTOS-AKI).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
Ischemia reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and ultimately leads to renal fibrosis, primarily via the transforming growth factor-β (TGF-β) pathway. Leucine-rich alpha-2-glycoprotein 1 (LRG1), a novel modulator of the TGF-β pathway, has been implicated in the modulation of renal fibrosis by affecting the TGF-β/Smad3 signaling axis. However, the role of LRG1 in the transition from AKI to chronic kidney disease (CKD) remains unclear.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
The ability of the mammalian kidney to repair or regenerate after acute kidney injury (AKI) is very limited. The maladaptive repair of AKI promotes progression to chronic kidney disease (CKD). Therefore, new strategies to promote the repair/regeneration of injured renal tubules after AKI are urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!