Chiral H NMR of Atropisomeric Quinazolinones With Enantiopure Phosphoric Acids.

Front Chem

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China.

Published: August 2018

A chiral phosphoric acid promoted enantioselective NMR analysis of atropisomeric quinazolinones was described, in which a variety of racemic arylquinazolinones such as afloqualone and IC-87114 were well recognized with up to 0. 21 ppm ΔΔδ value. With this method, the optical purities of different non-racemic substrates can be fast evaluated with high accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107746PMC
http://dx.doi.org/10.3389/fchem.2018.00300DOI Listing

Publication Analysis

Top Keywords

atropisomeric quinazolinones
8
chiral nmr
4
nmr atropisomeric
4
quinazolinones enantiopure
4
enantiopure phosphoric
4
phosphoric acids
4
acids chiral
4
chiral phosphoric
4
phosphoric acid
4
acid promoted
4

Similar Publications

Synthesis of Atropisomeric Quinazolin-4-one Derivatives Based on Remote H/D and C/C Discrimination.

J Org Chem

January 2025

Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan.

Both enantiomers of 2-ethylquinazolin-4-ones bearing -CHO/CDO and CHO/CHO phenyl groups at the N3 position were prepared. These are isotopic atropisomeric compounds based on a remote and conformationally flexible H/D and C/C discrimination, and it was found that a CHCl solution of -CHO/CDO derivative shows a slight specific optical rotation. Furthermore, diastereomeric quinazolinone derivatives bearing a chiral carbon were prepared, and their stereochemical purities and rotational stability as well as the isotopic atropisomerism were verified by H NMR and chiral high-performance liquid chromatography (HPLC) analyses.

View Article and Find Full Text PDF

Axially chiral N-substituted quinazolinones are important bioactive molecules, which are presented in many synthetic drugs. However, most strategies toward their atroposelective synthesis are mainly limited to the axially chiral arylquinazolinone frameworks. The development of modular synthetic methods to access diverse quinazolinone-based atropisomers remains scarce and challenging.

View Article and Find Full Text PDF

Atropisomerism in Drug Discovery: A Medicinal Chemistry Perspective Inspired by Atropisomeric Class I PI3K Inhibitors.

Acc Chem Res

September 2022

Gilead Sciences, Inc., 199 E Blaine Street, Seattle, Washington 98102, United States.

Atropisomerism is a type of axial chirality resulting from hindered rotation about a σ bond that gives rise to nonsuperimposable stereoisomers (termed "atropisomers"). The inversion of chirality of an atropisomeric axis is a time- and temperature-dependent dynamic process occurring by simple bond rotation. For this reason, the rotational energy barrier (Δ) and the interconversion rate between an atropisomeric pair of biologically active molecules are important parameters to consider in drug discovery.

View Article and Find Full Text PDF

Intermolecular Halogen Bond Detected in Racemic and Optically Pure N-C Axially Chiral 3-(2-Halophenyl)quinazoline-4-thione Derivatives.

Molecules

April 2022

Department of Applied Chemistry (Japanese Association of Bio-Intelligence for Well-Being), Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan.

The halogen bond has been widely used as an important supramolecular tool in various research areas. However, there are relatively few studies on halogen bonding related to molecular chirality. 3-(2-Halophenyl)quinazoline-4-thione derivatives have stable atropisomeric structures due to the rotational restriction around an N-C single bond.

View Article and Find Full Text PDF

Compared with the well-developed C-C and C-N axial chirality, the asymmetric synthesis of N-N axial chirality remains elusive and challenging. Herein we report the first atroposelective -acylation reaction of quinazolinone type benzamides with cinnamic anhydrides for the direct catalytic synthesis of optically active atropisomeric quinazolinone derivatives. This reaction features mild conditions and a broad substrate scope and produces N-N axially chiral compounds with high yields and very good enantioselectivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!