Here we present the synthesis and post-polymerisation modification of poly(acryloyl hydrazide), a versatile scaffold for the preparation of functional polymers: poly(acryloyl hydrazide) was prepared from commercially available starting materials in a three step synthesis on a large scale, in good yields and high purity. Our synthetic approach included the synthesis of a Boc-protected acryloyl hydrazide, the preparation of polymers RAFT polymerisation and the deprotection of the corresponding Boc-protected poly(acryloyl hydrazide). Post-polymerisation modification of poly(acryloyl hydrazide) was then demonstrated using a range of conditions for both hydrophilic and hydrophobic aldehydes. These experiments demonstrate the potential of poly(acryloyl hydrazide) as a scaffold in the synthesis of functional polymers, in particular those applications where screening of the activity of the functionalised polymers may be required ( biological applications).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091239 | PMC |
http://dx.doi.org/10.1039/c7py00535k | DOI Listing |
RSC Adv
June 2020
Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology Jais Bahadurpur, Mukhetia More, Harbanshganj Amethi Uttar Pradesh-229304 India +91-7080044156.
The utility of a Pickering emulsion (PEm) under saline conditions is strongly dependent on the stability of the emulsion in the presence of different salt concentrations. In this study, we have evaluated the effect of NaCl and temperature on the stability of a polyacryloyl hydrazide (PAHz)-Ag nanocomposite (NC) based PEm utilizing ocular observation, an optical microscope with a thermal stage, TGA, DLS, electrical conductivity, and rheological studies at different temperatures. The creaming stability of PEm in the presence of salt concentrations in the range of 0.
View Article and Find Full Text PDFJ Hazard Mater
July 2020
Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea. Electronic address:
In this study, we prepared poly(acryloyl hydrazide) (PAH)-grafted cellulose nanocrystal (CNC-PAH) particles via the atom transfer radical polymerization method for application to Cr(VI) adsorption. The closely-packed PAH chains grafted on the cellulose nanocrystal (CNC) surface provide a high density of amine groups that can adsorb Cr(VI) through strong electrostatic, hydrogen bonding and chelating interactions. CNC-PAH exhibited the optimum Cr(VI) adsorption capacity at the solution pH = 3, where its electrostatic attraction with Cr(VI) was maximized.
View Article and Find Full Text PDFPolym Chem
August 2017
School of Chemistry , University of Birmingham B15 2TT, UK . Email:
Here we present the synthesis and post-polymerisation modification of poly(acryloyl hydrazide), a versatile scaffold for the preparation of functional polymers: poly(acryloyl hydrazide) was prepared from commercially available starting materials in a three step synthesis on a large scale, in good yields and high purity. Our synthetic approach included the synthesis of a Boc-protected acryloyl hydrazide, the preparation of polymers RAFT polymerisation and the deprotection of the corresponding Boc-protected poly(acryloyl hydrazide). Post-polymerisation modification of poly(acryloyl hydrazide) was then demonstrated using a range of conditions for both hydrophilic and hydrophobic aldehydes.
View Article and Find Full Text PDFACS Omega
August 2017
Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, Uttar Pradesh 229316, India.
The efficiency of a fluorescence sensing device based on metal-enhanced fluorescence (MEF) is dependent on the optimization of interaction between the fluorophore and the metal nanoparticle (NP). Herewith, ultrasensitive and selective turn-on sensing of Au is achieved by using a suitable combination of fluorophore and metal NP system through sequential MEF effect. Dansyl hydrazide-tagged Ag NPs in the polyacryloyl hydrazide cavity are utilized to sense the picomolar concentration of Au in aqueous media.
View Article and Find Full Text PDFNanoscale Res Lett
August 2017
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 201620, Shanghai, People's Republic of China.
A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!