The productivity of short-rotation coppice (SRC) plantations with poplar ( spp.) strongly depends on soil water availability, which limits the future development of its cultivation, and makes the study of the transpirational water loss particularly timely under the ongoing climate change (more frequent drought and floods). This study assesses the transpiration at different scales (leaf, tree and stand) of four poplar genotypes belonging to different species and from a different genetic background grown under an SRC regime. Measurements were performed for an entire growing season during the third year of the third rotation in a commercial scale multigenotype SRC plantation in Flanders (Belgium). Measurements at leaf level were performed on specific days with a contrasted evaporative demand, temperature and incoming shortwave radiation and included stomatal conductance, stem and leaf water potential. Leaf transpiration and leaf hydraulic conductance were obtained from these measurements. To determine the transpiration at the tree level, single-stem sap flow using the stem heat balance (SHB) method and daily stem diameter variations were measured during the entire growing season. Sap flow-based canopy transpiration (), seasonal dry biomass yield, and water use efficiency (WUE; g aboveground dry matter/kg water transpired) of the four poplar genotypes were also calculated. The genotypes had contrasting physiological responses to environmental drivers and to soil conditions. Sap flow was tightly linked to the phenological stage of the trees and to the environmental variables (photosynthetically active radiation and vapor pressure deficit). The total for the 2016 growing season was of 334, 350, 483 and 618 mm for the four poplar genotypes, Bakan, Koster, Oudenberg and Grimminge, respectively. The differences in physiological traits and in transpiration of the four genotypes resulted in different responses of WUE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109959 | PMC |
http://dx.doi.org/10.1111/gcbb.12526 | DOI Listing |
Front Plant Sci
December 2024
Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
New genotypes of hybrid from the and sections, which encompass economically important species of L., have great potential to significantly enhance genetic gain from selection. Growth and its functional and structural determinants exhibiting a high level of variability are not only controlled by genetics, but also affected by environment, as well as genotype and environment interaction (G×E).
View Article and Find Full Text PDFFront Plant Sci
November 2024
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
The ionome represents elemental composition in plant tissues and can be an indicator of nutrient status as well as overall plant performance. Thus, identifying genetic determinants governing elemental uptake and storage is an important goal for breeding and engineering biomass feedstocks with improved performance. In this study, we coupled high-throughput ionome characterization of leaf tissues with high-resolution genome-wide association studies (GWAS) to uncover genetic loci that modulate ionomic composition in leaves of poplar ().
View Article and Find Full Text PDFInt J Mol Sci
October 2024
State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
Plant Cell Environ
November 2024
Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA.
BMC Plant Biol
November 2024
State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
Background: The interaction between soil characteristics and microbial communities is crucial for poplar growth under different planting densities. Yet, little is understood about their relationships and how they respond to primary environmental drivers across varying planting densities.
Results: In this study, we investigated poplar growth metrics, soil characteristics, and community assembly of soil bacterial and fungal communities in four poplar genotypes (M1316, BT17, S86, and B331) planted at low, medium, and high densities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!