How mitochondrial metabolism is altered by oncogenic tyrosine kinases to promote tumor growth is incompletely understood. Here, we show that oncogenic HER2 tyrosine kinase signaling induces phosphorylation of mitochondrial creatine kinase 1 (MtCK1) on tyrosine 153 (Y153) in an ABL-dependent manner in breast cancer cells. Y153 phosphorylation, which is commonly upregulated in HER2 breast cancers, stabilizes MtCK1 to increase the phosphocreatine energy shuttle and promote proliferation. Inhibition of the phosphocreatine energy shuttle by MtCK1 knockdown or with the creatine analog cyclocreatine decreases proliferation of trastuzumab-sensitive and -resistant HER2 cell lines in culture and in xenografts. Finally, we show that cyclocreatine in combination with the HER2 kinase inhibitor lapatinib reduces the growth of a trastuzumab-resistant HER2 patient-derived xenograft. These findings suggest that activation of the phosphocreatine energy shuttle by MtCK1 Y153 phosphorylation creates a druggable metabolic vulnerability in cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281770 | PMC |
http://dx.doi.org/10.1016/j.cmet.2018.08.008 | DOI Listing |
Korean J Physiol Pharmacol
January 2025
Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea.
The brain's substantial metabolic requirements, consuming a substantial fraction of the body's total energy despite its relatively small mass, necessitate sophisticated metabolic mechanisms for efficient energy distribution and utilization. The astrocyte-neuron lactate shuttle (ANLS) hypothesis has emerged as a fundamental framework explaining the metabolic cooperation between astrocytes and neurons, whereby astrocyte-derived lactate serves as a crucial energy substrate for neurons. This review synthesizes current understanding of brain energy metabolism, focusing on the dual roles of lactate as both an energy substrate and a signaling molecule.
View Article and Find Full Text PDFACS Nano
December 2024
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China.
The adsorption-conversion paradigm of polysulfides during the sulfur reduction reaction (SRR) is appealing to tackle the shuttle effect in Li-S batteries, especially based upon atomically dispersed electrocatalysts. However, mechanistic insights into such catalytic systems remain ambiguous, limiting the understanding of sulfur electrochemistry and retarding the rational design of available catalysts. Herein, we systematically explore the polysulfide adsorption-conversion essence via a geminal-atom model system to understand the catalyst roles toward an expedited SRR.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Henan University, School of Materials Science and Engineering, CHINA.
Sluggish reaction kinetics of sulfur species fundamentally trigger the incomplete conversion of S8↔Li2S and restricted lifespan of lithium-sulfur batteries, especially under high sulfur loading and/or low electrolyte/sulfur (E/S) ratio. Introducing redox mediators (RMs) is an effective strategy to boost the battery reaction kinetics, yet their multifunctionality and shuttle inhibition are still not available. Here, a unique ethyl viologen (EtV²⁺) RM with two highly reversible redox couples (EtV²⁺/EtV⁺, EtV⁺/EtV0) is demonstrated to well match the redox chemistry of sulfur species, in terms of accelerating the electron transfer in S8 reduction, Li2S nucleation and the Li2S oxidation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology, Materials Science and Engineering, CHINA.
Sulfurized polyacrylonitrile (SPAN) presents an opportunity to replace elemental sulfur as a "shuttle-free" cathode for secondary Li-S batteries, which can be an ideal choice for stationary energy storage due to its abundance, low cost, and sustainability. The electrolyte options for the state-of-the-art SPAN batteries have been limited to the flammable carbonate and ether ones, which raises safety concerns. Here, we explored the use of a non-flammable acetonitrile (AN) electrolyte for SPAN battery for the first time and identified the irreversible cleavage of C-S bonds of SPAN as the main reason for the failure of SPAN in AN electrolyte.
View Article and Find Full Text PDFACS Nano
December 2024
School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.
Polysulfide shuttling and dendrite growth are two primary challenges that significantly limit the practical applications of lithium-sulfur batteries (LSBs). Herein, a three-in-one strategy for a separator based on a localized electrostatic field is demonstrated to simultaneously achieve shuttle inhibition of polysulfides, catalytic activation of the Li-S reaction, and dendrite-free plating of lithium ions. Specifically, an interlayer of polyacrylonitrile nanofiber (PNF) incorporating poled BaTiO (PBTO) particles and coating with a layer of MoS (PBTO@PNF-MoS) is developed on the PP separator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!