Particles from Gas-Saturated Solutions (PGSS)-drying has been used as a green alternative to encapsulate omega-3 polyunsaturated fatty acids (n-3 PUFAs) at mild, non-oxidative conditions. PGSS-dried particles have been compared to those obtained by conventional drying methods such as spray-drying and freeze-drying, finding encapsulation efficiencies (EE) up to 98% and spherical morphology for PGSS- and spray-dried particles. Freeze-dried powders showed irregular morphology and EE from 95.8 to 98.6%, depending on the freezing method. Differential scanning calorimetry (DSC) analysis revealed glass-transition and melting peaks of OSA-starch and a cold-crystallization peak corresponding to the encapsulated n-3 PUFA concentrate. Compared to conventionally dried powders, PGSS-dried microparticles showed lower primary and secondary oxidation after 28 days of storage at 4 °C. Ascorbic acid addition combined with the mild processing conditions of PGSS-drying yielded particles with a maximum peroxide value of 2.5 meq O/kg oil after 28 days of storage at 4 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2018.07.082 | DOI Listing |
Anal Chim Acta
February 2025
Food Laboratory of Zhongyuan, Luohe, 462000, Henan Province, PR China.
Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Hydraulic Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China.
Water-saving irrigation and the mixed application of controlled-release nitrogen fertilizer (CRNF) and common urea (CU; with a higher nitrogen release rate) have shown promise in improving rice yield with high resource use efficiency. However, the physiological mechanism underlying this effect remains largely unknown. This study involved a field experiment on rice in Jingzhou City, Central China, in 2020 and 2021.
View Article and Find Full Text PDFPharmaceutics
November 2024
Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece.
Spray freeze drying (SFD) represents an emerging drying technique designed to produce a wide range of pharmaceuticals, foods, and active components with high quality and enhanced stability due to their unique structural characteristics. This method combines the advantages of the well-established techniques of freeze drying (FD) and spray drying (SD) while overcoming their challenges related to high process temperatures and durations. This is why SFD has experienced steady growth in recent years regarding not only the research interest, which is reflected by the increasing number of literature articles, but most importantly, the expanded market adoption, particularly in the pharmaceutical sector.
View Article and Find Full Text PDFMolecules
December 2024
Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland.
Electrostatic spray drying (ESD) of a milk protein matrix comprising whey protein isolate (WPI), skim milk powder (SMP), and lactose was compared to conventional spray drying (CSD) and freeze-drying (FD). ESD and CSD were used to produce powders at low (0.12-0.
View Article and Find Full Text PDFFoods
December 2024
College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China.
To enhance the physicochemical quality, drying efficiency, and nutrient retention of dried products, this study investigated the effects of ultrasonic pretreatment on the radio frequency vacuum (RFV) drying characteristics, microstructure, and retention of natural active substances in slices. The ultrasonic time, power, and frequency were considered as experimental factors. The results showed that, compared with conventional RFV drying, ultrasonic pretreatment reduced the drying time of slices by 20-60 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!