Mir-483 inhibits colon cancer cell proliferation and migration by targeting TRAF1.

Kaohsiung J Med Sci

Department of Gastroenterology I, Qingdao Municipal Hospital, Qingdao, PR China. Electronic address:

Published: September 2018

MicroRNAs are important regulators during human growth and development. Emerging evidence indicates that microRNAs play important roles in colorectal cancer. The aim of this study is to reveal the biological function and direct target gene of miR-483 in colorectal cancer. The biological function of miR-483 on the proliferation and migration of colon cancer cells was then examined by Edu assay and transwell assay, respectively. Our findings revealed that miR-483 mimic could significantly inhibit cell proliferation and migration. The target gene of miR-483 was predicted by target scan software and identified by a dual fluorescence reporter system which showed that TRAF1 was a direct target gene of miR-483 in SW480 cell line. These data suggest that miR-483 is a colorectal cancer suppressor which could inhibit cell proliferation and migration, possibly via targeting TRAF1. The miR-483 could be a potential treatment target for colorectal cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kjms.2018.04.005DOI Listing

Publication Analysis

Top Keywords

proliferation migration
16
colorectal cancer
16
cell proliferation
12
target gene
12
gene mir-483
12
mir-483
8
colon cancer
8
migration targeting
8
targeting traf1
8
biological function
8

Similar Publications

Whole-genome sequencing identified ALK as a novel susceptible gene of Hirschsprung disease.

Arab J Gastroenterol

January 2025

Department of Pediatric Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430015, China.

Background And Study Aims: Hirschsprung disease (HD) is a complex developmental disease that resulted from impaired proliferation and migration of neural crest cells. Despite the genetic causation of enteric nervous system have been found to be responsible for part of HD cases, the genetic aetiology of most HD patients still needs to be explored.

Patients And Methods: Whole-genome sequencing and subsequent Sanger sequencing validation analysis were performed in 13 HD children and their unaffected parents.

View Article and Find Full Text PDF

Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo.

J Adv Res

January 2025

Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022 People's Republic of China. Electronic address:

Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.

Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.

View Article and Find Full Text PDF

(1) BACKGROUND: Metabolic abnormalities and immune inflammation are key elements within pathogenesis of pulmonary arterial hypertension (PAH). And in PAH patients, aberrant glutamine metabolism has been observed; however, the function of glutaminase 1 (GLS1) in macrophage is still unknown. So we aims to investigate GLS1's impact upon macrophages in PAH.

View Article and Find Full Text PDF

Identification of lactylation-associated fibroblast subclusters predicting prognosis and cancer immunotherapy response in colon cancer.

Gene

January 2025

Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China. Electronic address:

Background: Lactylation plays an important role in tumor progression. This study aimed to clarify the impact of lactylation on cancer-associated fibroblasts(CAFs).

Methods: Single-cell and bulk RNA sequence data, along with survival information, were obtained from TCGA and GEO datasets.

View Article and Find Full Text PDF

SLC35C2 promotes stemness and progression in hepatocellular carcinoma by activating lipogenesis.

Cell Signal

January 2025

Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China. Electronic address:

Metabolic reprogramming plays a critical role in in tumorigenesis and progression, including hepatocellular carcinoma (HCC). The Solute Carriers (SLCs) family is responsible for the transport of a range of nutrients and has been linked to various cancers. Cancer stem cells (CSC) are a contributing factor to the recurrence and metastasis of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!