Introduction: Mucosal drug delivery is an attractive route of administration, particularly in overcoming deficits of conventional dosage forms including high first-pass metabolism and poor bioavailability. Fast drainage from the target mucosa, however, represents a major limitation as it prevents sufficient drug absorption. In order to address these problems, mucoadhesive in situ gelling drug delivery systems have been investigated as they facilitate easy application in combination with a longer residence time at the administration site resulting in more desirable therapeutic effects.
Areas Covered: The present review evaluates the importance of the combination of mucoadhesive and in situ gelling polymers along with mechanisms of in situ gelation and mucoadhesion. In addition, an overview about recent applications in mucosal drug delivery is provided.
Expert Opinion: In situ gelling and mucoadhesive polymers proved to be essential excipients in order to prolong the mucosal residence time of drug delivery systems. Due to this prolonged residence time both local and systemic therapeutic efficacy of numerous drugs can be substantially improved. Depending on the site of administration and the incorporated drug, combinations of different polymers with in situ gelling and mucoadhesive properties are needed to keep the delivery system as long as feasible at the target site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17425247.2018.1517741 | DOI Listing |
J Tissue Viability
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran. Electronic address:
Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:
The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy. Electronic address:
The work aims to develop mucoadhesive and thermo-responsive in situ gelling systems, using hydrophobically-modified hydroxypropyl-methyl cellulose (Sangelose, SG) and beta-cyclodextrin (β-CD) derivatives, for preventing viral respiratory infections. Eight SG/CD systems with varying CD concentrations were evaluated for rheological properties, mucoadhesiveness, spreadability and sprayability via nasal devices; cytotoxicity was in vitro investigated on reconstituted nasal epithelia. Additionally, droplet size distribution and spray deposition were assessed for the most promising systems.
View Article and Find Full Text PDFGels
January 2025
Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia.
The study focuses on the development of an in situ gelling dexamethasone (DEX) oromucosal formulation designed for the treatment of aphthous stomatitis. Three series of formulations were prepared; a first series containing DEX suspended, a second series containing DEX and, in addition, mint essential oil (EO), and a third series containing EO and DEX solubilized in propylene glycol (PG). In the composition, polymers in the role of mucoadhesive agent were interchanged (hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), carboxymethyl cellulose (CMC), and sodium carboxymethyl cellulose (NaCMC).
View Article and Find Full Text PDFGels
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia.
Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ's ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on Tween 80 (T) or Poloxamer 188 (P).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!