Human embryonic stem cells (hESCs) are pluripotent cells widely used in conventional and regenerative medicine due to their ability to self-renew, proliferate and differentiate. Recently, genetic modification of stem cells using genome editing is the most advanced technique for treating hereditary diseases. Nevertheless, the low transfection efficiency of hESCs using enzymatic methods is still limited in preclinical research. To overcome these limitations, we have developed transfection methods using non-enzymatic treatments on hESCs. In this study, hESCs were transfected following enzymatic (TrypLE and trypsin) and non-enzymatic treatment ethylenediaminetetraacetic acid (EDTA) to increase transfection efficiency. Flow cytometric analysis using an enhanced green fluorescent protein vector showed a significantly increased transfection efficiency of EDTA method compared to standard enzyme method. In addition, the EDTA approach maintained stable cell viability and recovery rate of hESCs after transfection. Also, metabolic activity by using Extracellular Flux Analyzer revealed that EDTA method maintained as similar levels of cell functionality as normal group comparing with enzymatic groups. These results suggest that transfection using EDTA is a more efficient and safe substitute for transfection than the use of standard enzymatic methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6285293 | PMC |
http://dx.doi.org/10.15283/ijsc18037 | DOI Listing |
Lipid nanoparticles (LNP) are the most clinically advanced non-viral gene delivery system. While progress has been made for enhancing delivery, cell specific targeting remains a challenge. Targeting moieties such as antibodies can be chemically-conjugated to LNPs however, this approach is complex and has challenges for scaling up.
View Article and Find Full Text PDFBr J Haematol
January 2025
Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy.
View Article and Find Full Text PDFHum Gene Ther
January 2025
School of Bioengineering, East China University of Science and Technology, Shanghai, China.
Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield.
View Article and Find Full Text PDFMessenger RNA (mRNA) therapeutics have garnered considerable attention due to their remarkable efficacy in the treatment of various diseases. The COVID-19 mRNA vaccine and RSV mRNA vaccine have been approved on the market. Due to the inherent nuclease-instability and negative charge of mRNA, delivery systems are developed to protect the mRNA from degradation and facilitate its crossing cell membrane to express functional proteins or peptides in the cytoplasm.
View Article and Find Full Text PDFJ Virol Methods
January 2025
Huzhou Key Laboratory of Innovation and Application of Agricultural Germplasm Resources, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China. Electronic address:
In this study, a novel Encephalomyocarditis virus (EMCV) reverse genetic operating system was developed utilizing CMV promoters, enabling EMCV genome expression under the transcriptional control of the CMV immediate early promoter and BGH polyA transcriptional-termination signal. The full-length cDNA of EMCV BJC3 was ligated to the pRK5 vector, incorporating the CMV eukaryotic promoter sequence, resulting in the construction of recombinant plasmid EMCV (pEMCV). Subsequently, the recombinant plasmid was transfected into BHK-21 cells to generate the rescue virus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!