Vascular endothelial growth factor (VEGF) represents a growth factor with important pro-angiogenic activity, having a mitogenic and an anti-apoptotic effect on endothelial cells, increasing the vascular permeability, promoting cell migration, etc. Due to these effects, it actively contributes in regulating the normal and pathological angiogenic processes. In humans, the VEGF family is composed of several members: VEGF-A (which has different isoforms), VEGF-B, VEGF-C, VEGF-D, VEGF-E (viral VEGF), VEGF-F (snake venom VEGF), placenta growth factor (PlGF), and, recently, to this family has been added endocrine gland-derived vascular endothelial growth factor (EG-VEGF). VEGF binds to tyrosine kinase cell receptors (VEGFRs): VEGFR-1 [Fms-like tyrosine kinase 1 (Flt-1)], VEGFR-2 [kinase insert domain receptor (KDR) in human; fetal liver kinase 1 (Flk-1) in mouse] and VEGFR-3 [Fms-like tyrosine kinase 4 (Flt-4)]. While VEGFR-1 and VEGFR-2 are expressed predominantly on vascular endothelial cells, VEGFR-3 is expressed especially on lymphatic endothelial cells. VEGFR-2 has the strongest pro-angiogenic activity and a higher tyrosine kinase activity than VEGFR-1. Endothelial cells also express co-receptors, such as neuropilin-1 (NP-1) and neuropilin-2 (NP-2), which modulate tyrosine kinase receptor activity. Both VEGF and VEGFRs are expressed not only on endothelial cells, but also on non-endothelial cells. This article aims to highlight the most recent data referring to the VEGF family and its receptors, as well as its implications in the angiogenesis process. At present, blocking angiogenesis in cancer or in other pathological processes, using anti-VEGF and anti-VEGFRs therapies, is considered to be extremely important.

Download full-text PDF

Source

Publication Analysis

Top Keywords

growth factor
20
endothelial cells
20
tyrosine kinase
20
vascular endothelial
16
endothelial growth
12
vegf
8
factor vegf
8
normal pathological
8
pro-angiogenic activity
8
vegf family
8

Similar Publications

The Landscape of Vascular Endothelial Growth Factor Inhibition in Retinal Diseases.

Invest Ophthalmol Vis Sci

January 2025

John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States.

Ever since the US Food and Drug Administration (FDA) approved the first vascular endothelial growth factor (VEGF) antagonist 2 decades ago, inhibitors of VEGF have revolutionized the treatment of a variety of ocular disorders involving pathologic neovascularization and retinal exudation. In this perspective, we evaluate the current status of anti-VEGF therapies and the real-world challenges encountered with maintaining therapeutic outcomes. Finally, we describe novel VEGF-based and combinatorial approaches that are in clinical development.

View Article and Find Full Text PDF

Non-canonical Wnt signaling pathway activated NFATC3 promotes GDF15 expression in MASH: prospective analyses of UK biobank proteomic data.

Hepatol Int

January 2025

National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.

View Article and Find Full Text PDF

We aimed to investigate the wound-healing, antioxidant, and anti-inflammatory effects of pterostilbene (PTS) on human gingival fibroblasts (GF). Different concentrations of PTS were applied to GFs and cell viability was evaluated by MTT assay. GFs were stimulated by lipopolysaccharide (LPS) and the study groups were determined as LPS, LPS + 1 μM PTS, LPS + 10 μM PTS, and control.

View Article and Find Full Text PDF

Role of polyamines in intestinal mucosal barrier function.

Semin Immunopathol

January 2025

Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.

The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy.

View Article and Find Full Text PDF

Double-stranded RNA orbivirus disrupts the DNA-sensing cGAS-sting axis to prevent type I IFN induction.

Cell Mol Life Sci

January 2025

Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.

Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!