A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes. | LitMetric

Ionic surfactants may impact removal efficiency of organic contaminants from aqueous solution, but research regarding the adsorption mechanisms on surfactant-modified carbon nanotubes (CNTs) was limited. In this study, three multi-walled and one single-walled CNTs were used as adsorbents to investigate the adsorption behavior and mechanisms of ciprofloxacin (CIP) on CNTs modified by ionic surfactants (cationic CTAB (Cetyltrimethylamnonium bromide) or anionic SDS (Sodium dodecyl sulfate)). More than 80% (82-88%) of the total removed CIP on CTAB-modified CNTs occurred within the first 6 h, much higher than that on SDS-modified CNTs (57-78%). Modeling adsorption kinetics demonstrated that CIP adsorption on surfactant-modified CNTs was controlled by multiple and faster processes, and both external mass transfer and intraparticle diffusion are limiting factors. Relative to SDS, CTAB was significantly (P < 0.001) concentration-dependent in suppressing CIP removal. Besides, the increase in 1/n values of Freundlich model with increasing CTAB concentration suggested that CTAB could be a stronger competitor for CIP adsorption. Hydrophobic interactions predominated zwitterionic CIP adsorption on all CNTs tested, while electrostatic interactions could help control ionizable CIP adsorption on surfactant-modified CNTs depending upon pH. CIP adsorption on modified SWCNTs significantly declined with increasing ionic strength from 1 mM to 100 mM relative to those multi-walled CNTs because the more favorable aggregation of SWCNTs reduced the CIP adsorption, irrespective of which surfactant was added. Significant desorption hysteresis of adsorbed CIP released by SDS and water was observed, but not by CTAB, by which 32.6-54.4% of adsorbed CIP were removed. For SDS-modified CNTs, the mean release ratio (RR) followed an order of MWCNTs (0.075) > MHCNTs (0.058) > SWCNTs (0.057) > MCCNTs (0.049), significantly (P < 0.001) lower than CTAB-CNTs (0.37-0.56). It can be predicted that the tested surfactants co-existing with CNTs depress removal efficiency of diverse contaminants similar to CIP in aqueous systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2018.08.059DOI Listing

Publication Analysis

Top Keywords

surfactant-modified carbon
8
carbon nanotubes
8
ionic surfactants
8
cnts
6
removal ciprofloxacin
4
ciprofloxacin aqueous
4
aqueous solutions
4
solutions ionic
4
ionic surfactant-modified
4
nanotubes ionic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!