Endowing polyetheretherketone with synergistic bactericidal effects and improved osteogenic ability.

Acta Biomater

Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China.

Published: October 2018

Unlabelled: Biomedical associated infections (BAI) are difficult to treat and may even lead to amputation and death, especially after the emergence of drug-resistant bacteria. The aim of this study was to harness the potential synergistic effects of multiple bactericidal agents to endow polyetheretherketone (PEEK) with the ability of achieving full eradication of planktonic and adherent bacteria while maintaining acceptable biocompatibility. In this work, a mussel inspired, silver nanoparticles (AgNPs) incorporated silk fibroin (SF)/gentamicin sulfate (GS) coating was constructed upon porous PEEK surface. The obtained coating greatly enhanced the bactericidal efficiency to Gram-positive bacteria and Gram-negative bacteria. The number of bacteria survived in the culture medium after treated with this coating was 10 fold lower than that survived after treated with PEEK sample, while the number of viable bacteria adhered to this coating was 10 lower than that adhered to PEEK sample. Furthermore, release of Ag and GS increased with decreasing pH, indicating great potential of this coating to be a "smart" bacteria-triggered self-defensive coating. Meanwhile, this functional coating shows favorable cytocompatibility and osteogenic ability. The mechanism behind this dual function is also partially revealed. Expectedly, this "smart" dual function coating can give a promise for PEEK to become a solution to increasingly deteriorated BAI.

Statement Of Significance: In this study, a mussel inspired, silver nanoparticles (AgNPs) incorporated silk fibroin (SF)/gentamicin sulfate (GS) coating was constructed upon porous polyetheretherketone (PEEK) surface. This design was aimed to provide a solution to the increasingly deteriorated biomedical associated infections (BAI). Actually, this design endowed PEEK with dual function: bacteria-triggered synergistic bactericidal effect and improved osteogenic ability. The combination of silver and GS exhibited synergistic bacteria killing effect on both Gram-positive and Gram-negative bacteria, which showed 10 times higher in releasing-killing and 10 times higher in anti-adhesion than that of untreated PEEK. Furthermore, release of bactericidal agents increased with decreasing pH, indicating great potential of this coating to be a bacteria-triggered self-defensive coating. More interestingly, this study revealed the mechanism of synergistic effect between silver and GS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2018.08.037DOI Listing

Publication Analysis

Top Keywords

osteogenic ability
12
dual function
12
coating
11
synergistic bactericidal
8
improved osteogenic
8
biomedical associated
8
associated infections
8
infections bai
8
bacteria
8
bactericidal agents
8

Similar Publications

Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair.

View Article and Find Full Text PDF

Composite barrier membrane for bone regeneration: advancing biomaterial strategies in defect repair.

RSC Adv

January 2025

School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneratioon, Shandong Provincial Clinical Research Center for Oral Diseases Ji'nan 250012 China

Bone defects represent a significant challenge in clinical practice, driving the need for innovative solutions that effectively support bone regeneration. Barrier membranes, due to playing a critical role in creating an environment conducive to bone regeneration by preventing the infiltration of non-osteogenic tissues, are widely applied to bone repair. However, inadequate spatial stability and osteogenesis-promoting ability often limit current barrier membranes.

View Article and Find Full Text PDF

Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).

Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.

View Article and Find Full Text PDF

Background: It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach.

Methods: We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel CeO@CA-074Me NPs.

View Article and Find Full Text PDF

Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg)-modified black phosphorus (BP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!