Continuous production of pharmaceuticals requires traceability from the raw material to the final dosage form. With that regard, understanding the residence time distribution (RTD) of the whole process and its unit operations is crucial. This work describes a structured approach to characterizing and modelling of RTDs in a continuous blender and a tamping pin capsule filling machine, including insights into data processing. The parametrized RTD models were interconnected to model a continuous direct capsule-filling process, showing the batch transition as well as the propagation of a 2 min feed disturbance throughout the process. Various control strategies were investigated in-silico, aiding in the selection of optimal material diversion point to minimize the material waste. Additionally, the RTD models can facilitate process design and optimization. In this work, adaptions to the capsule filling machine were made and their influence on the RTD was examined to achieve an optimal machine setup.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2018.08.056 | DOI Listing |
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective arene construction by desymmetrizing -enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine.
View Article and Find Full Text PDFArch Dis Child
December 2024
Research Department of Behavioural Science and Health, University College London, London, UK.
Objectives: To understand (1) healthcare professionals' (HCPs) perceptions and experiences of commercial milk formula (CMF) marketing to consumers and HCPs and (2) HCPs' perspectives on regulation of CMF marketing.
Setting: UK.
Design: In-person and online interviews with 41 HCPs with regular contact with pregnant women and mothers.
Cancers (Basel)
January 2025
Department of Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Oligometastatic prostate cancer (OMPC) represents an intermediate state in the progression from localized disease to widespread metastasis when the radiographically significant sites are limited in number and location. With no clear consensus on a definition, its diagnostic significance and associated optimal therapeutic approach remain controversial, posing a significant challenge for clinicians. The current standard of care for metastatic disease is to start systemic therapy; however, active surveillance and targeted radiotherapy have become attractive options to mitigate the long-term effects of androgen deprivation therapy (ADT).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Recently, we developed a spatial phage-assisted continuous evolution (SPACE) system. This system utilizes chemotaxis coupled with the growth of motile bacteria during their spatial range expansion in soft agar to provide fresh host cells for iterative phage infection and selection pressure for preserving evolved genes of interest carried by phage mutants. Controllable mutagenesis activated only in a subpopulation of the migrating cells is essential in this system to efficiently generate mutated progeny phages from which desired individuals are selected during the directed evolution process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!