A novel approach for the rapid target screening of water contaminants in trace concentrations was applied for the determination of the artificial sweetener Acesulfame-K, an accepted municipal wastewater indicator. This new method combines the selective enrichment of target analytes on paper-based molecular imprinted polymer disks and the subsequent analysis using a modified ion mobility spectrometer allowing negative electrospray ionization (ESI-IMS). Our developed ion mobility spectrometer permits the sensitive detection of Acesulfame with a limit of detection of 93 µg L within few seconds without sample separation. The use of modified paper filters for fast extraction and enrichment of the target substance from water samples results in a lower limit of detection of 0.19 µg L. This procedure is directly applicable in the field, the transport and the proper storage of bulky sample bottles is avoided. The capability of the procedure developed was demonstrated by measuring real samples from a river at locations upstream and downstream of the effluent of the central municipal waste water treatment plant. The quantitative data of ion mobility measurements show a very good agreement with those obtained with the commonly used standard procedure (high performance liquid chromatography-tandem mass spectrometry).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2018.07.076 | DOI Listing |
J Am Soc Mass Spectrom
January 2025
Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.
Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet.
View Article and Find Full Text PDFNano Lett
January 2025
National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Emory University School of Medicine, Atlanta, GA, USA.
Background: The extracellular amyloid plaques, one of the pathological hallmarks of Alzheimers Disease (AD), are frequently also observed in the cortex of cognitively unimpaired subjects or as co-pathology in other neurodegenerative diseases. Progressive deposition of fibrillar amyloid-β (Aβ) as amyloid plaques for two decades prior disease onset leads to extensive isomerization of Aβ N-terminus. Quantifying the extent of isomerized Aβ can be provide insight into the different stages of amyloidosis in the brain.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of South Florida, Tampa, FL, USA.
Background: Tau accumulation, a hallmark of Alzheimer's disease, fuels cognitive decline and neuronal death. Our team identified FKBP51, a stabilizer of neurotoxic tau oligomers. Notably, FKBP51 levels increase with age and further in AD brains, where it is found associated with pathological tau.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
USC Keck School of Medicine, Los Angeles, CA, USA.
Background: Human Apolipoprotein (APOE) has three isoforms, ε2, ε3, and ε4 among which ε4 (APOE4) confers the highest risk for late-onset Alzheimer's disease (AD). APOE4 is also the most prone to aggregate among APOE isoforms. Current evidence strongly suggests that APOE aggregation leads to neuronal dysfunction and eventually to AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!