In this work, nonspecific physico-chemical parameters were determined in 160 honey samples belonging to the four main botanical categories present in Sardinia Island, Italy (strawberry tree, thistle, asphodel and eucalyptus) in order to develop a discriminant method for determining the botanical origin of honey. All the possible combinations of the seven physico-chemical parameters (pH, free acidity, electrical conductivity, color, total phenolic compounds, FRAP activity, and DPPH activity) measured in the honey samples were evaluated by Linear Discriminant Analysis (LDA). LDA models led to the prediction of each botanical origin with a very low level of misclassification (typically less than 5%). Since very high levels of correct prediction in cross validation (98.3%) and external validation (100%) were obtained considering only four parameters (i.e. pH, acidity, conductivity and DPPH), these results might allow a fast and easy control of the botanical origin of honeys.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2018.08.025DOI Listing

Publication Analysis

Top Keywords

botanical origin
12
physico-chemical parameters
8
honey samples
8
chemometric treatment
4
treatment simple
4
simple physical
4
physical chemical
4
chemical data
4
data discrimination
4
discrimination unifloral
4

Similar Publications

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

A thorny tale: The origin and diversification of Cirsium (Compositae).

Mol Phylogenet Evol

January 2025

Autonomous University of Barcelona, Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC by IBB - Cerdanyola del Vallès, Spain.

Widely distributed plant genera offer insights into biogeographic processes and biodiversity. The Carduus-Cirsium group, with over 600 species in eight genera, is diverse across the Holarctic regions, especially in the Mediterranean Basin, Southwest Asia, Japan, and North America. Despite this diversity, evolutionary and biogeographic processes within the group, particularly for the genus Cirsium, remain underexplored.

View Article and Find Full Text PDF

Genetic Diversity of the Collection of Far Eastern spp. Revealed by RAD Sequencing Technology.

Plants (Basel)

December 2024

N.V. Tsitsin Main Botanical Garden, Russian Academy of Sciences, 127276 Moscow, Russia.

More than ten species of the Lindl. genus bear edible fruits rich in biologically active compounds, which are essential and beneficial for human health. The most popular cultivars today are the large-fruited species, and , commonly known as kiwi.

View Article and Find Full Text PDF

Unveiling the Mineral and Sugar Richness of Moroccan Honeys: A Study of Botanical Origins and Quality Indicators.

Molecules

January 2025

Laboratory of Environment and Applied Chemistry (LCAE), Team: Physical Chemistry of the Natural Resources and Processes, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco.

This study comprehensively analyzes the mineral and heavy metal profiles of seven honey types, focusing on the contents of potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), cadmium (Cd), and lead (Pb), with particular emphasis on honey produced in eastern Morocco. Multifloral honey was found to have the highest total mineral content (661 mg/kg), while rosemary honey had the lowest (201.31 mg/kg), revealing the strong influence of floral and botanical origin.

View Article and Find Full Text PDF

Distinguishing the botanical origins of rare honey through untargeted metabolomics and machine learning interpreting flavonoid profiles.

Food Chem

January 2025

State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China. Electronic address:

Distinguishing the botanic origins of monofloral honey is the foremost concern in ensuring its authentication. In this work, an innovative, green, and comprehensive approach was developed to distinguish the botanic origins of four types of rare honey, and the strategy involved in the following aspects: Based on theoretical design, suitable natural deep eutectic solvent (NADES) was screened to extract flavonoids from honey samples; after NADES extracts were directly analyzed by high-resolution mass spectrometry, the discrimination models of monofloral honey were established by untargeted metabolomics combined with machine learning. Based on the comparison of various models, the Random Forest algorithm had higher prediction accuracy for four types of monofloral honey, and characteristic compounds for each rare monofloral honey were screened based on SHapley Additive exPlanations values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!