A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation of milk protein concentrates by ultrafiltration and continuous diafiltration: Effect of process design on overall efficiency. | LitMetric

Preparation of milk protein concentrates by ultrafiltration and continuous diafiltration: Effect of process design on overall efficiency.

J Dairy Sci

STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Department of Food Sciences, Université Laval, Québec, QC, Canada, G1V 0A6. Electronic address:

Published: November 2018

High-milk-protein concentrates (>80% on a dry weight basis) are typically produced by ultrafiltration (UF) with constant-volume diafiltration (DF). To maximize protein retention at a commercial scale, polymeric spiral-wound UF membranes with a molecular weight cut-off (MWCO) of 10 kDa are commonly used. Flux decline and membrane fouling during UF have been studied extensively and the selection of an optimal UF-DF sequence is expected to have a considerable effect on both the process efficiency and the volumes of by-products generated. The objective of this study was to characterize the performance of the UF-DF process by evaluating permeate flux decline, fouling resistance, energy and water consumption, and retentate composition as a function of MWCO (10 and 50 kDa) and UF-DF sequence [3.5×-2 diavolumes (DV) and 5×-0.8DV]. The UF-DF experiments were performed on pasteurized skim milk using a pilot-scale filtration system operated at 50°C under a constant transmembrane pressure of 465 kPa. The results showed that MWCO had no effect on permeate flux for the same UF-DF sequence. Irreversible resistance was also similar for both sequences, whatever the MWCO, suggesting that soluble protein deposition within the pores is similar for all conditions. Despite lower permeate fluxes and greater reversible resistance for the 5×-0.8DV sequence, the overall energy consumption of the 2 UF-DF sequences was similar. However, the 3.5×-2DV sequence required more water for DF and generated larger volumes of permeate to be processed, which will require more membrane area and lead to greater environmental impact. A comparative life cycle assessment should however be performed to confirm which sequence has the lowest environmental impact.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2018-14430DOI Listing

Publication Analysis

Top Keywords

uf-df sequence
12
mwco kda
8
flux decline
8
permeate flux
8
environmental impact
8
uf-df
6
sequence
6
preparation milk
4
milk protein
4
protein concentrates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!