The role of two-component regulatory system in β-lactam antibiotics resistance.

Microbiol Res

Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA. Electronic address:

Published: October 2018

The irrational use of antibiotics in agriculture and in the medical field has led to a variety of pathogenic microorganisms that produce drug resistance and even multidrug resistance. B-lactam is one of the most widely used antibiotics to treat infectious diseases. Resistance to β-lactam resistance can be primarily due to the presence β-lactamase, mutation of β-lactam targets and overexpression of efflux pumps. Two-component regulatory systems are composed of histidine kinase and response regulator that regulate gene expression under different environmental conditions. In this review, we summarized the mechanisms by which β-lactam resistance is developed and the role of the two-component regulatory system in β-lactam resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2018.07.005DOI Listing

Publication Analysis

Top Keywords

two-component regulatory
12
β-lactam resistance
12
role two-component
8
regulatory system
8
system β-lactam
8
resistance
7
β-lactam
5
β-lactam antibiotics
4
antibiotics resistance
4
resistance irrational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!