The coumarin-orthoaminophenol derivative was prepared under mild conditions. Based on crystallographic structure, IR and Raman, H and C NMR spectra the most applicable theoretical method was determined to be B3LYP-D3BJ. The stability and reactivity parameters were calculated, in the framework of NBO, QTAIM and Fukui functions, form the optimized structure. This reactivity was then probed in biological systems. The antimicrobial activity towards four bacteria and three fungi species was examined and activity was proven. In vitro cytotoxic effects, against human epithelial colorectal carcinoma HCT-116 and human healthy lung MRC-5 cell lines, of the investigated substance are also tested. Compound showed significant cytotoxic effects on HCT-116 cells, while on MRC-5 cells showed no cytotoxic effects. The effect of hydroxy group in ortho-position on the overall reactivity of molecule was examined through molecular docking with Glutathione-S-transferases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2018.08.034 | DOI Listing |
Sci Rep
December 2024
School of Medicine, Yichun University, Yichun, 336000, China.
Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand.
Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
Despite decades of improvements in cytotoxic therapy, the current standard of care for locally advanced pancreatic cancer (LAPC) provides, on average, only a few months of survival benefit. Stereotactic Body Radiation Therapy (SBRT), a technique that accurately delivers high doses of radiation to tumors in fewer fractions, has emerged as a promising therapy to improve local control of LAPC; however, its effects on the tumor microenvironment and hypoxia remain poorly understood. To explore how SBRT affects pancreatic tumors, we combined an orthotopic mouse model of pancreatic cancer with an intravital microscopy platform to visualize changes to the in vivo tumor microenvironment in real-time.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.
View Article and Find Full Text PDFSci Rep
December 2024
Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
The aim of the study was to investigate the potential preventive use of short-chain fatty acids (SCFAs) to modulate inflammatory responses in gilthead seabream (Sparus aurata) skin. Initially, in vitro experiments were conducted to evaluate the effects of various concentrations of butyric acid, acetic acid and propionic acid, as well as their combination, on the cytotoxicity and cell viability of three different cell lines. The results determined the safe concentration of SCFAs, which was then used for an in vivo study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!