Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene.

Biosens Bioelectron

BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada T2N 1N4; Center for BioEngineering Research and Education, University of Calgary, Calgary, Alberta, Canada T2N 1N4. Electronic address:

Published: November 2018

MicroRNAs (miRNAs) are small, endogenous, noncoding RNAs, shown to be expressed abnormally in many tumors and identified as predictive biomarkers for early diagnosis of several cancers including the breast. Therefore, the label-free and highly sensitive detection of miRNAs is of critical significance. In this work, a highly sensitive and label-free nano-genosensor is developed for the detection of miRNA-21, a known breast cancer biomarker, based on a specific architecture of nitrogen-doped functionalized graphene (NFG), silver nanoparticles (AgNPs), and polyaniline (PANI) that resulted in a remarkable effect on signal amplification. Following the successful functionalization of the nanocomposite and immobilization of the specific sequence of the aminated complementary oligonucleotide of miRNA-21, the detection was performed using differential pulse voltammetry (DPV). The oxidation peak current of the redox probe under optimal conditions was determined to monitor the event hybridization of miRNA-21 biomarker. Applying this highly sensitive and optimized nano-biosensor enabled detection of a wide dynamic range of 10 fM-10 µM with a sensitivity of 2.5 µA cm and a low detection limit of 0.2 fM. This nano-biosensor also demonstrated highly reproducible results in the analysis of blood samples, with recoveries between 94% and 107%, and could be used for early detection of breast cancer by direct detection of the miRNA-21 in real clinical samples without any need to sample preparation, RNA extraction and/or amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.08.025DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
highly sensitive
12
detection
8
detection breast
8
mirna-21 biomarker
8
detection mirna-21
8
mirna-21
5
label-free ultrasensitive
4
ultrasensitive detection
4
breast
4

Similar Publications

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.

View Article and Find Full Text PDF

Purpose: Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC.

View Article and Find Full Text PDF

Background: Breast cancer is a significant global health issue, responsible for a large number of female cancer deaths. Early detection through breast cancer screening is crucial in reducing mortality rates. However, regions such as Sub-Saharan Africa (SSA) face challenges in identifying breast cancer early, resulting in higher mortality rates and a lower quality of life.

View Article and Find Full Text PDF

Metastasis in patients with oral squamous cell carcinoma has been associated with a poor prognosis. However, sensitive and reliable tests for monitoring their occurrence are unavailable, with the exception of PET-CT. Circulating tumor cells and cell-free DNA have emerged as promising biomarkers for determining treatment efficacy and as prognostic predictors in solid tumors such as breast cancer and colorectal cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!