Management thresholds stemming from altered fire dynamics in present-day arid and semi-arid environments.

J Environ Manage

Conservation Science Partners, 11050 Pioneer Trail, Suite 202, Truckee, CA 96161 USA. Electronic address:

Published: December 2018

Changes in fire frequency, size, and severity are driving ecological transformations in many systems. In arid and semi-arid regions that are adapted to fire, long-term fire exclusion by managers leads to declines in fire frequency, altered fire size distribution, and increased proportion of high severity fires. In arid and semi-arid systems where fire was historically rare, factors such as invasion by highly combustible non-native plants elevate fire frequency and size, elevating mortality of native species. Altered temperature and precipitation regimes may exacerbate these changes by increasing biomass and flammability. Current transformation in fire dynamics carry social as well as ecological consequences. Human cultures, livelihoods, values, and management behaviors are attuned to fire dynamics. Changes can make it costly or impossible to maintain traditional landscape use and economic activities. We review the ecological and social science literature to examine drivers of altered fire dynamics in arid and semi-arid systems worldwide and the conditions representing fire dynamics thresholds-points at which altered conditions may make it difficult or impossible to achieve management objectives, even via traditional adaptive management focusing on alternative management activities to achieve objectives. Such thresholds could force a wholesale shift in management objectives and practices and a new approach to adaptive management that redefines objectives when no viable adaptive action can be undertaken.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.08.079DOI Listing

Publication Analysis

Top Keywords

fire dynamics
20
arid semi-arid
16
fire
12
altered fire
12
fire frequency
12
frequency size
8
semi-arid systems
8
management objectives
8
adaptive management
8
management
7

Similar Publications

This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced ​​bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint areas. These structurally optimized composite pads are examined by numerical simulation of impact dynamics to understand their anti-penetration performance whose accuracy is then validated by live fire tests.

View Article and Find Full Text PDF

Improving fire retardancy and mechanical properties of polyurethane elastomer by acid hydrotropic lignin.

Int J Biol Macromol

December 2024

USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA. Electronic address:

Improving flame retardancy and mechanical strength of lignin-containing polyurethane is a great challenge. In this study, lignin with favorable reactivity and dispersity was extracted from poplar using acid hydrotrope p-TsOH in EtOH. The extracted acid hydrotrope lignin (AHL) was subsequently functionalized with nitrogen and phosphorus (FHL) and reacted with isocyanate to fabricate a fire-retardant polyurethane (FHL-PU).

View Article and Find Full Text PDF

Efficient traffic management solutions in 6G communication systems face challenges as the scale of the Internet of Things (IoT) grows. This paper aims to yield an all-inclusive framework ensuring reliable air pollution monitoring throughout smart cities, capitalizing on leading-edge techniques to encourage large coverage, high-accuracy data, and scalability. Dynamic sensors deployed to mobile ad-hoc pieces of fire networking sensors adapt to ambient changes.

View Article and Find Full Text PDF

Turning cold into hot: emerging strategies to fire up the tumor microenvironment.

Trends Cancer

December 2024

National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China. Electronic address:

The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm.

View Article and Find Full Text PDF

This paper examines the intersection of environmental history and the history of science, specifically the impact of forestry science and fire management on land use and community dynamics in rural Portuguese mountains. It further traces the evolution of fire management from an ancestral rural practice to a scientific concern and the subsequent integration of vernacular knowledge with scientific methods. In the early twentieth century, fire was a common tool in rural Portugal for land clearance, pasture management, and soil enrichment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!