A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of composite membranes with irregular rod-like structure via atom transfer radical polymerization for efficient oil-water emulsion separation. | LitMetric

Development of composite membranes with irregular rod-like structure via atom transfer radical polymerization for efficient oil-water emulsion separation.

J Colloid Interface Sci

Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:

Published: January 2019

Development of superhydrophilic, stable and cost-effective composite membranes for efficient oil-water emulsion separation is highly desirable. Herein, an irregular rod-like composite membrane was prepared through 3-aminopropyltriethoxysilane (APTES) modification, followed by acrylamide polymerization with atomic transfer radical polymerization (ATRP). The as-prepared membrane exhibits superhydrophilicity/underwater superoleophobicity due to its irregular rod-like structure and pores-induced capillary actions. The composite membrane has demonstrated sufficient stability in acidic, alkaline and salty environments due to the polymerization of acrylamide. Moreover, the as-prepared composite membrane has effectively separated various oil-water emulsions and demonstrated high permeation and superior flux recovery. The present work demonstrates that the ATRP-assisted composite membrane is a promising material in a wide range of applications, such as industrial wastewater recovery and drinking water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.08.055DOI Listing

Publication Analysis

Top Keywords

composite membrane
16
irregular rod-like
12
composite membranes
8
rod-like structure
8
transfer radical
8
radical polymerization
8
efficient oil-water
8
oil-water emulsion
8
emulsion separation
8
composite
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!