The primary cause of non-melanoma skin cancer (NMSC) is ultraviolet B (UVB) radiation. We have shown previously that mTORC2 inhibition sensitizes keratinocytes to UVB-induced apoptosis mediated by the transcription factor FOXO3a. FOXO3a is a key regulator of apoptosis and a tumor suppressor in several cancer types. Activation of FOXO3a promotes apoptosis through the coordinated expression of a variety of target genes, including TRAIL and NOXA. We hypothesized that in the setting of mTORC2 inhibition, the UVB-induced expression of these factors would lead to apoptosis in a FOXO3a-dependent manner. Using spontaneously immortalized human keratinocytes (HaCaT cells), we observed that both TRAIL and NOXA expression increased in cells exposed to UVB and the TOR kinase inhibitor Torin 2. Similar to knockdown of FOXO3a, NOXA knockdown reversed the sensitization to UVB-induced apoptosis caused by mTORC2 inhibition. In contrast, loss of TRAIL by either knockdown or knockout actually enhanced expression of nuclear FOXO3a, which maintained apoptosis. These surprising results are not due to faulty death receptor signaling in HaCaT cells, as we found that the cells undergo extrinsic apoptosis in response to treatment with recombinant TRAIL. Even more striking, TRAIL knockout cells were sensitized to recombinant TRAIL-induced apoptosis compared to wild-type HaCaT cells, with the largest increase occurring in the presence of mTORC2 inhibition. Taken together, these studies provide strong evidence that mTORC2 controls UVB-induced apoptosis by regulating NOXA expression downstream of FOXO3a. Moreover, FOXO3a transcriptional activation by mTORC2 inhibitors may be a valuable target for prevention or therapy of NMSC, especially in cases with low endogenous TRAIL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6185741 | PMC |
http://dx.doi.org/10.1016/j.cellsig.2018.08.018 | DOI Listing |
J Photochem Photobiol B
December 2024
Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, China. Electronic address:
Takifugu bimaculatus, a pufferfish species farmed in Fujian Province, is known for its non-toxic flesh and collagen-rich skin. We identified a novel collagen-derived matrix metalloproteinase 1 (MMP-1) inhibitory peptide, from T. bimaculatus skin with potent anti-photoaging properties.
View Article and Find Full Text PDFArch Dermatol Res
December 2024
Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Pudong New District, Shanghai, 201399, People's Republic of China.
Allicin is a sulfide extracted from garlic bulbs responsible for various physiological and pathophysiological effects, including antioxidant, antibacterial, and anti-parasite activities. However, its efficacy and mechanism of protecting UVB-induced photodamage have not been studied. The research explores Allicin's protective roles and underlying mechanisms in UVB-induced photodamage of keratinocytes.
View Article and Find Full Text PDFBioorg Chem
December 2024
School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China. Electronic address:
To find new antioxidants, 13 Trolox amides (2a-2m) and 7 Trolox esters (3a-3g) were synthesized and evaluated for their anti-inflammatory and antioxidant activity. Compounds 2e, 2i, 3b and 3d showed potent anti-inflammatory and antioxidant activity, amongst them, 3d demonstrated the most photoprotective effects on UVB-irradiated human skin keratinocyte (HaCaT) cells (IC = 5.13 µM) through efficiently scavenging free radicals and dose-dependently reducing reactive oxygen species (ROS) and apoptosis generation, as well as effectively promoting wound healing.
View Article and Find Full Text PDFFree Radic Res
November 2024
BK21-Four, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea.
Karyoptosis is a type of regulated cell death (RCD) characterized by explosive nuclear rupture caused by a loss of nuclear membrane integrity, resulting in the release of genomic DNA and other nuclear components into the cytosol and extracellular environment. The mechanism underlying karyoptosis involves a delicate balance between the following forces: the expansion force exerted by the tightly packed DNA in the nucleus, the resistance provided by the nuclear lamina at the inner nuclear membrane (INM), and the tensile force from the cytoskeleton that helps position the nucleus at the center of the cytoplasm, allowing it to remain maximally expanded. In addition, CREB3, a type II integral membrane protein with DNA-binding ability, tethers chromatin to the INM, providing a tightening force through chromatin interactions that prevent nuclear membrane rupture.
View Article and Find Full Text PDFMol Cell
December 2024
Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark. Electronic address:
Solar UVB light causes damage to the outermost layer of skin. This insult induces rapid local responses, such as dermal inflammation, keratinocyte cell death, and epidermal thickening, all of which have traditionally been associated with DNA damage response signaling. Another stress response that is activated by UVB light is the ribotoxic stress response (RSR), which depends on the ribosome-associated mitogen-activated protein 3 kinases (MAP3K) ZAKα and culminates in p38 and JNK activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!