In Huntington disease (HD), an expanded polyglutamine (polyQ > 37) sequence within huntingtin (htt) exon1 leads to enhanced disease risk. It has proved difficult, however, to determine whether the toxic form generated by polyQ expansion is a misfolded or avid-binding monomer, an α-helix-rich oligomer, or a β-sheet-rich amyloid fibril. Here we describe an engineered htt exon1 analog featuring a short polyQ sequence that nonetheless quickly forms amyloid fibrils and causes HD-like toxicity in rat neurons and Drosophila. Additional modifications within the polyQ segment produce htt exon1 analogs that populate only spherical oligomers and are non-toxic in cells and flies. Furthermore, in mixture with expanded-polyQ htt exon1, the latter analogs in vitro suppress amyloid formation and promote oligomer formation, and in vivo rescue neurons and flies expressing mhtt exon1 from dysfunction and death. Thus, in our experiments, while htt exon1 toxicity tracks with aggregation propensity, it does so in spite of the toxic construct's possessing polyQ tracts well below those normally considered to be disease-associated. That is, aggregation propensity proves to be a more accurate surrogate for toxicity than is polyQ repeat length itself, strongly supporting a major toxic role for htt exon1 aggregation in HD. In addition, the results suggest that the aggregates that are most toxic in these model systems are amyloid-related. These engineered analogs are novel tools for mapping properties of polyQ self-assembly intermediates and products that should similarly be useful in the analysis of other expanded polyQ diseases. Small molecules with similar amyloid inhibitory properties might be developed into effective therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186178 | PMC |
http://dx.doi.org/10.1016/j.nbd.2018.08.019 | DOI Listing |
J Phys Chem Lett
November 2024
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States.
Closed-form expressions for the analysis of Dark state Exchange Saturation Transfer (DEST) NMR experiments, a powerful experimental tool for characterizing exchange processes involving the interaction of NMR visible species with very high molecular weight partners, is presented. Essentially identical exchange and relaxation parameters are derived from the analytical and numerical best fits of the DEST profiles obtained for a protein construct derived from huntingtin exon-1, comprising the N-terminal amphiphilic sequence followed by a seven-residue glutamine repeat, httQ, in the presence of small (SUV) and large (LUV) unilamellar lipid vesicles. The use of analytical expressions significantly speeds up the fitting of experimental DEST profiles to a two-state exchange model and simplifies the analysis of the DEST effects.
View Article and Find Full Text PDFAging Cell
December 2024
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China.
Huntington's disease (HD) is caused by a CAG repeat expansion in exon1 of the HTT gene that encodes a polyglutamine tract in huntingtin protein. The formation of HTT exon1 fragments with an expanded polyglutamine repeat has been implicated as a key step in the pathogenesis of HD. It was reported that the CAG repeat length-dependent aberrant splicing of exon1 HTT results in a short polyadenylated mRNA that is translated into an exon1 HTT protein.
View Article and Find Full Text PDFJ Biol Chem
September 2024
Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA. Electronic address:
Protein aggregation is a common feature of many neurodegenerative diseases. In Huntington's disease, mutant huntingtin is the primary aggregating protein, but the aggregation of other proteins, such as TDP43, is likely to further contribute to toxicity. Moreover, mutant huntingtin is also a risk factor for TDP pathology in ALS.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2024
NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy.
J Phys Chem Lett
June 2024
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States.
The effects of two macromolecular cosolutes, specifically the polysaccharide dextran-20 and the protein lysozyme, on the aggregation kinetics of a pathogenic huntingtin exon-1 protein (hht) with a 35 polyglutamine repeat, httQ, are described. A unified kinetic model that establishes a direct connection between reversible tetramerization occurring on the microsecond time scale and irreversible fibril formation on a time scale of hours/days forms the basis for quantitative analysis of httQ aggregation, monitored by measuring cross-peak intensities in a series of 2D H-N NMR correlation spectra acquired during the course of aggregation. The primary effects of the two cosolutes are associated with shifts in the prenucleation tetramerization equilibrium resulting in substantial changes in concentration of "preformed" httQ tetramers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!