Extending the host substrate range of industrially relevant microbes, such as Saccharomyces cerevisiae, has been a highly-active area of research since the conception of metabolic engineering. Yet, rational strategies that enable non-native substrate utilization in this yeast without the need for combinatorial and/or evolutionary techniques are underdeveloped. Herein, this review focuses on pentose metabolism in S. cerevisiae as a case study to highlight the challenges in this field. In the last three decades, work has focused on expressing exogenous pentose metabolizing enzymes as well as endogenous enzymes for effective pentose assimilation, growth, and biofuel production. The engineering strategies that are employed for pentose assimilation in this yeast are reviewed, and compared with metabolism and regulation of native sugar, galactose. In the case of galactose metabolism, multiple signals regulate and aid growth in the presence of the sugar. However, for pentoses that are non-native, it is unclear if similar growth and regulatory signals are activated. Such a comparative analysis aids in identifying missing links in xylose and arabinose utilization. While research on pentose metabolism have mostly concentrated on pathway level optimization, recent transcriptomics analyses highlight the need to consider more global regulatory, structural, and signaling components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452637 | PMC |
http://dx.doi.org/10.1002/biot.201800364 | DOI Listing |
Int J Mol Sci
January 2025
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
() has caused huge economic losses to the cattle industry. The interaction between and host cells is elucidated by screening and identifying the target protein of adhesin on the surface of the host cell membrane. However, the response mechanism of embryonic bovine lung (EBL) cells to infection is not yet fully understood.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
Bee venom (BV) and its main compound melittin (MLT) have antioxidant, anti-inflammatory, and anti-aging activities; however, very little research has been conducted on their effects on skin aging. In this study, a mouse skin aging model induced by D-galactose was constructed via subcutaneous injection into the scruff of the neck, and different doses of BV and MLT were used as interventions. The anti-aging effects and mechanisms of BV and MLT were explored by detecting the skin morphology and structure, and anti-aging-related factors and performing non-targeted metabolomics of mice.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
The pentose phosphate pathway (PPP), traditionally recognized for its role in generating nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate (R5P), has emerged as a critical metabolic hub with involvements in various gastrointestinal (GI) cancers. The PPP plays crucial roles in the initiation, development, and tumor microenvironment (TME) of GI cancers by modulating redox homeostasis and providing precursors for nucleotide biosynthesis. Targeting PPP enzymes and their regulatory axis has been a potential strategy in anti-GI cancer therapies.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing 163712, China.
Background: Saline-alkali stress is a major factor limiting the growth of oats. Sugar is the primary carbon and energy source in plants which regulates plant development and growth by regulating enzyme activity and gene expression. Sucrose, glucose, and fructose are ubiquitous plant-soluble sugars that act as signalling molecules in the transcriptional regulation of various metabolic and defence-related genes.
View Article and Find Full Text PDFBiomolecules
January 2025
Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.
Myalgic Encephalomyelitis or Chronic Fatigue Syndrome (ME/CFS) is a chronic multisystem disease characterized by severe muscle fatigue, pain, dizziness, and brain fog. The two most common symptoms are post-exertional malaise (PEM) and orthostatic intolerance (OI). ME/CFS patients with OI (ME+OI) suffer from dizziness or faintness due to a sudden drop in blood pressure while maintaining an upright posture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!