Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor that is refractory to existing therapeutic regimens, which reflects the presence of stem-like cells, termed glioma-initiating cells (GICs). The complex interactions between different signaling pathways and epigenetic regulation of key genes may be critical in the maintaining GICs in their stem-like state. Although several signaling pathways have been identified as being dysregulated in GBM, the prognosis of GBM patients remains miserable despite improvements in targeted therapies. In this report, we identified that BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, plays a fundamental role in maintaining GICs in their stem-like state. In addition, we identified a novel mechanism by which BRG1 regulates glycolysis genes critical for GICs. BRG1 downregulates the expression of TXNIP, a negative regulator of glycolysis. BRG1 knockdown also triggered the STAT3 pathway, which led to TXNIP activation. We further identified that TXNIP is an STAT3-regulated gene. Moreover, BRG1 suppressed the expression of interferon-stimulated genes, which are negatively regulated by STAT3 and regulate tumorigenesis. We further demonstrate that BRG1 plays a critical role in the drug resistance of GICs and in GIC-induced tumorigenesis. By genetic and pharmacological means, we found that inhibiting BRG1 can sensitize GICs to chemotherapeutic drugs, temozolomide and carmustine. Our studies suggest that BRG1 may be a novel therapeutic target in GBM. The identification of the critical role that BRG1 plays in GIC stemness and chemosensitivity will inform the development of better targeted therapies in GBM and possibly other cancers. Stem Cells 2018;36:1806-12.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427091 | PMC |
http://dx.doi.org/10.1002/stem.2909 | DOI Listing |
Carcinogenesis
January 2025
Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
The tumor suppressor gene SMARCA4, a critical component of the SWI/SNF chromatin remodeling complex, is frequently inactivated in various cancers, including clear cell renal cell carcinoma (ccRCC). Despite its significance, the role of SMARCA4 in ccRCC development and its potential therapeutic vulnerabilities have not been fully explored. Our research found that SMARCA4 deficiency was associated with poor prognosis and was observed in a subset of high-grade ccRCCs.
View Article and Find Full Text PDFPharmacol Res
January 2025
Department of Physiology, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, 430030, PR China. Electronic address:
Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells.
View Article and Find Full Text PDFArgonaute proteins are best known for their role in microRNA-mediated post-transcriptional gene silencing. Here, we show that AGO3 and AGO4, but not AGO2, localize to the sex chromatin of pachytene spermatocytes where they are required for transcriptional silencing of XY-linked genes, known as Meiotic Sex Chromosome Inactivation (MSCI). Using an mouse, we show that AGO3 and AGO4 are key regulators of spermatogenesis, orchestrating expression of meiosis-related genes during prophase I while maintaining silencing of spermiogenesis genes.
View Article and Find Full Text PDFJTO Clin Res Rep
January 2025
Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
Introduction: Thoracic SMARCA4-deficient undifferentiated tumors (SMARCA4-UTs) are a recently defined group of aggressive cancers in which the effectiveness of standard treatments for lung cancer is unknown.
Methods: We collected clinical, pathologic, and demographic variables from five institutions for patients whose tumors met criteria for SMARCA4-UTs (undifferentiated phenotype and loss of SMARCA4 (BRG1) by immunohistochemistry).
Results: We identified 92 patients with SMARCA4-UTs; 58 (63%) had stage IV disease at diagnosis and 16 (17%) developed recurrent or metastatic disease after initial diagnosis.
J Med Chem
January 2025
Foghorn Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States.
BRM (SMARCA2) and BRG1 (SMARCA4) are mutually exclusive ATPase subunits of the mSWI/SNF (BAF) chromatin remodeling complex. BAF is an attractive therapeutic target because of its role in transcription, and mutations in the subunits of BAF are common in cancer and neurological disorders. Herein, we report the discovery of compound () as a potent allosteric inhibitor of the dual ATPase subunits from a high-throughput screening hit with a BRM IC of ∼27 μM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!