Spinal muscular atrophy (SMA), the most common gentic cause of infantile death caused by mutations in the SMN1 gene, presents a unique case in the field of splice modulation therapy, where a gene (or lack of) is responsible for causing the disease phenotype but treatment is not focused around it. Antisense therapy targeting SMN2 which leads to SMN protein expression has been at the forefront of research when it comes to developing a feasible therapy for treating SMA. Recent FDA approval of an antisense-based drug with the 2'-methoxyethoxy (2'MOE) chemistry, called nusinersen (Spinraza), brought antisense drugs into the spotlight. The 2'MOE, although effective, has weaknesses such as the inability to cross the blood-brain barrier and the high cost of treatment. This propelled the research community to investigate new chemistries of antisense oligonucleotides (ASOs) that may be better in both treatment and cost efficiency. Here we describe two types of ASOs, phosphorodiamidate morpholino oligomers (PMOs) and locked nucleic acids (LNA)-DNA mixmers, being investigated as potential treatments for SMA, and methods used to test their efficacy, including quantitative RT-PCR, Western blotting, and immunofluorescence staining to detect SMN in nuclear gems/Cajal bodies, in type I SMA patient fibroblast cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-8651-4_27 | DOI Listing |
Phys Ther Res
October 2024
Department of Physical Therapy, Faculty of Health and Medical Care, Saitama Medical University, Japan.
Objective: In this study, we aimed to determine the effects of 2-week neuromuscular electrical stimulation (NMES) on quadriceps muscle atrophy and lower extremity motor score in individuals with subacute incomplete cervical spinal cord injury (SCI).
Methods: This stratified randomized controlled trial, conducted in the advanced critical care center of a university hospital, comprised 49 individuals with American Spinal Injury Association (ASIA) impairment scale grade C and D incomplete cervical SCI. The participants were stratified based on the ASIA impairment scale grade and randomly assigned to the control (n = 25) or NMES (n = 24) group.
Neuromuscul Disord
December 2024
Pharma Personalized Healthcare, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
The severity of spinal muscular atrophy (SMA) is inversely correlated with the number of survival of motor neuron 2 (SMN2) copies an individual has. This observational, retrospective analysis of natural history data included untreated individuals with a genetic diagnosis of types 1-3 SMA and stratified disease-related characteristics by SMN2 copy number. The outcomes investigated were time to: death, permanent ventilation, respiratory support, feeding support, scoliosis surgery, and achievement and loss of motor milestones.
View Article and Find Full Text PDFBiomedicines
January 2025
Departments of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien City 970, Hualien County, Taiwan.
: To determine whether epidural electrical stimulation (EES) improves sensory recovery and walking function in patients with chronic spinal cord injury (SCI) with a grade on the American Spinal Cord Injury Association impairment scale (AIS) of C or D at the cervical level. : Three individuals with cervical-level chronic AIS D SCI were enrolled in the study. The mean injury duration and age were 4.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an 710061, China.
Spinal muscular atrophy is a rare genetic disease. Nusinersen and Risdiplam, recognized as disease-modifying therapies, were included in the National Reimbursement Drug List in 2022 and 2023, respectively, in China. Policies have been implemented to enhance a multi-level medical security system, particularly for rare diseases.
View Article and Find Full Text PDFJ Neurodev Disord
January 2025
Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, No 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
Background: Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!