For many years, cardiovascular disease (CVD) has been the leading cause of death around the world. Often associated with CVD are comorbidities such as obesity, abnormal lipid profiles and insulin resistance. Insulin is a key hormone that functions as a regulator of cellular metabolism in many tissues in the human body. Insulin resistance is defined as a decrease in tissue response to insulin stimulation thus insulin resistance is characterized by defects in uptake and oxidation of glucose, a decrease in glycogen synthesis, and, to a lesser extent, the ability to suppress lipid oxidation. Literature widely suggests that free fatty acids are the predominant substrate used in the adult myocardium for ATP production, however, the cardiac metabolic network is highly flexible and can use other substrates, such as glucose, lactate or amino acids. During insulin resistance, several metabolic alterations induce the development of cardiovascular disease. For instance, insulin resistance can induce an imbalance in glucose metabolism that generates chronic hyperglycemia, which in turn triggers oxidative stress and causes an inflammatory response that leads to cell damage. Insulin resistance can also alter systemic lipid metabolism which then leads to the development of dyslipidemia and the well-known lipid triad: (1) high levels of plasma triglycerides, (2) low levels of high-density lipoprotein, and (3) the appearance of small dense low-density lipoproteins. This triad, along with endothelial dysfunction, which can also be induced by aberrant insulin signaling, contribute to atherosclerotic plaque formation. Regarding the systemic consequences associated with insulin resistance and the metabolic cardiac alterations, it can be concluded that insulin resistance in the myocardium generates damage by at least three different mechanisms: (1) signal transduction alteration, (2) impaired regulation of substrate metabolism, and (3) altered delivery of substrates to the myocardium. The aim of this review is to discuss the mechanisms associated with insulin resistance and the development of CVD. New therapies focused on decreasing insulin resistance may contribute to a decrease in both CVD and atherosclerotic plaque generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119242 | PMC |
http://dx.doi.org/10.1186/s12933-018-0762-4 | DOI Listing |
Lipids Health Dis
January 2025
Department of Cardiology, West China Hospital, Sichuan University West China School of Medicine, 37 Guoxue Road, Chengdu, Sichuan, 610041, China.
Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.
View Article and Find Full Text PDFBMC Public Health
January 2025
School of Public Health, Southeast University, Nanjing. 87 Dingjiaqiao Road, Nanjing, China.
Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China.
Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS.
View Article and Find Full Text PDFNPJ Aging
January 2025
Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Japan.
We investigated clinical factors and biochemical markers associated with amygdalar metabolic activity evaluated by [F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) in 346 subjects without a history of malignant neoplasms. Univariate regression analysis revealed significant relationships between amygdalar metabolic activity and fasting plasma glucose (FPG), glycated hemoglobin, coronary artery disease (CAD) history, aspirin use, oral hypoglycemic agents (OHAs) use, and asymmetric dimethylarginine (ADMA). In multiple stepwise regression analysis, FPG and CAD history were independently associated with amygdalar metabolic activity.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
February 2025
Department of General Medicine the First Affiliated Hospital of Soochow University, Suzhou215006,China.
To analyze the occurrence of metabolic dysfunction-associated fatty liver disease (MAFLD) and related inflammatory indicators in obstructive sleep apnea hypopnea syndrome (OSAHS) and explore the risk factors of MAFLD. A cross-sectional study. From January 2022 to October 2024,172 patients with sleep disorders were enrolled in the First Affiliated Hospital of Soochow University,including 38 patients with non-OSAHS,53 patients with mild OSAHS,37 patients with moderate OSAHS,and 44 patients with severe OSAHS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!