In the present study, we used micro-Raman spectroscopy with high-resolution analysis to discriminate between bloodstains from infants and bloodstains from adults. Raman peaks were detected at 674, 754, 976, 1002, 1105, 1127, 1176, 1248, 1340, 1368, 1390, 1560, and 1611 cm ; these peaks were derived from hemoglobin, albumin, and glucose. However, a peak was obtained at 1105 cm , which was assigned to histidine; this peak was observed only for bloodstains from adults. Human adult hemoglobin (HbA) is composed of an α β tetramer structure, whereas human fetal hemoglobin (HbF) is composed of an α γ . Therefore, the lack of a Raman peak at 1105 cm in bloodstains from infants indicates the possibility of two histidine substitutions (His116Ile and His143Ser) in the γ chain of HbF. This study discriminates between bloodstains from infants and bloodstains from adults using micro-Raman spectroscopy, with beneficial implications in forensic science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1556-4029.13904 | DOI Listing |
J Funct Biomater
January 2025
Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8126, Japan.
This study assessed the biocompatibility and chemical properties of two bioceramic root canal sealers, EndoSequence BC Sealer (EBC) and Nishika Canal Sealer BG (NBG), using a sealer extrusion model. Eight-week-old male Wistar rats were used. The mesial root canals of the upper first molars were pulpectomized and overfilled with EBC, NBG, or, as reference, epoxy resin-based AH Plus (AHP).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
Contamination of water resources by artificial coloring agents and the increasing incidence of bacterial illnesses are two significant environmental and public health issues that are getting worse day by day. Traditional treatment techniques frequently fail to address these problems adequately in a sustainable and environmental friendly way. In response, our study presents a novel photocatalyst that demonstrates superior photodegradation capability and antibacterial qualities in catering the above issues.
View Article and Find Full Text PDFToxics
November 2024
School of Public Health, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
Microplastics (MPs) are emerging environmental pollutants. Pregnancy and infancy are sensitive windows for environmental exposure. However, few studies have investigated the presence of MPs in mother-infant pairs, or the exposure source.
View Article and Find Full Text PDFLangmuir
January 2025
Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan.
By integrating iron-cobalt squarate bimetallic metal-organic framework (Fe-Co-SqBMoF) based smart material (SM) with functional DNA (fDNA), we designed a target responsive fDNA@Fe-Co-SqBMoF bioelectrode that exhibits recognition induced switchable response to serve as a reagentless single step electrochemical apta-switch (REA). The construct takes advantage of fDNA ability to bind and concentrate target on the receptor interface, while Fe-Co-SqBMoF@SM multifeatures to serve as an immobilization matrix and a signal generating electrochemical switch. Fe-Co-SqBMoF was introduced to prepare a redox active pencil graphite electrode (PGE), while fDNA (aptamer) was decorated on the receptor PGE to impart specificity and selectivity.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India.
The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!