Controllable mechanical strength and biodegradation of bioceramic scaffolds is a great challenge to treat the load-bearing bone defects. Herein a new strategy has been developed to fabricate porous bioceramic scaffolds with adjustable component distributions based on varying the core-shell-structured nozzles in three-dimensional (3D) direct ink writing platform. The porous bioceramic scaffolds composed of different nonstoichiometic calcium silicate (nCSi) with 0%, 4% or 10% of magnesium-substituting-calcium ratio (CSi, CSi-Mg4, CSi-Mg10) was fabricated. Beyond the mechanically mixed composite scaffolds, varying the different nCSi slurries through the coaxially aligned bilayer nozzle makes it easy to create core-shell bilayer bioceramic filaments and better control of the different nCSi distribution in pore strut after sintering. It was evident that the magnesium substitution in CSi contributed to the increase of compressive strength for the single-phasic scaffolds from 11.2 MPa (CSi), to 39.4 MPa (CSi-Mg4) and 80 MPa (CSi-Mg10). The nCSi distribution in pore struts in the series of core-shell-strut scaffolds could significantly adjust the strength [e.g. CSi@CSi-Mg10 (58.9 MPa) vs CSi-Mg10@CSi (30.4 MPa)] and biodegradation ratio in Tris buffer for a long time stage (6 weeks). These findings demonstrate that the nCSi components with different distributions in core or shell layer of pore struts lead to tunable strength and biodegradation inside their interconnected macropore architectures of the scaffolds. It is possibly helpful to develop new bioactive scaffolds for time-dependent tailoring mechanical and biological performances to significantly enhance bone regeneration and repair applications, especially in some load-bearing bone defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2018.08.018 | DOI Listing |
Biomaterials
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:
Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China. Electronic address:
The overexpression of glutathione (GSH) within the tumor microenvironment has long been considered as the major obstacle for reactive oxygen species (ROS)-based antitumor therapies. To address this challenge, a selenite (SeO) and ferric ion co-doped hydroxyapatite (SF-HAP) nanohybrid was synthesized, which is then introduced into poly-L-lactic acid (PLLA) to prepare porous scaffold by selective laser sintering to continuously release Fe and SeO ions. Of great significance is the released SeO catabolize GSH to generate superoxide anion (O) rather than directly eliminating GSH, thereby reversing the obstacle posed by its overexpression and achieving a "waste-to-treasure" transformation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Basic Sciences, Araçatuba Dental School, São Paulo State University - UNESP, Araçatuba, 16066-840, Brazil.
Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Xinjian South Road 85#, Taiyuan, China, Taiyuan, 030001, CHINA.
Ultraviolet-assisted Direct Ink Writing(UV-DIW), an extrusion-based additive manufacturing technology, has emerged as a prominent 3D printing technique and is currently an important topic in bone tissue engineering research. This study focused on the printability of double-network (DN) bioink (Nano-hydroxyapatite/Polyethylene glycol diacrylate(nHA/PEGDA)). Next, we search for the optimal UV-DIW printing parameters for the scaffold formed by nHA-PEGDA.
View Article and Find Full Text PDFRSC Adv
December 2024
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México UNAM Av. Universidad, C.U. Coyoacán 04510 Ciudad de México Mexico.
The challenge of bone tissue regeneration implies the use of new advanced technologies for the manufacture of polymeric matrices, with 3D printing technology being a suitable option for tissue engineering due to its low processing cost, its simple operation and the wide use of biomaterials in biomedicine. Among the biopolymers used to obtain porous scaffolds, poly(lactic acid) (PLA) stands out due its mechanical and biodegradability properties, although its low bioactivity to promote bone regeneration is a great challenge. In this research, a 3D scaffold based on PLA reinforced with bioceramics such as graphene oxide (GO) and β-tricalcium phosphate (TCP) was designed and characterized by FTIR, XRD, DSC, SEM and mechanical tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!