The responses of pepper (Capsicum annuum) plants to inoculation with the pathogenic bacterium Ralstonia solanacearum and to high-temperature-high-humidity (HTHH) conditions were previously found to be coordinated by the transcription factors CaWRKY6 and CaWRKY40; however, the underlying molecular mechanism was unclear. Herein, we identified and functionally characterized CaHsfB2a, a nuclear-localized heat shock factor involved in pepper immunity to R. solanacearum inoculation (RSI) and tolerance to HTHH. CaHsfB2a is transcriptionally induced in pepper plants by RSI or HTHH and by exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), or abscisic acid (ABA). Virus-induced gene silencing (VIGS) of CaHsfB2a significantly impaired pepper immunity to RSI, hampered HTHH tolerance, and curtailed expression of immunity- and thermotolerance-associated marker genes such as CaHIR1, CaNPR1, CaABR1, and CaHSP24. Likewise, transient overexpression of CaHsfB2a in pepper leaves induced hypersensitive response (HR)-like cell death and H2O2 accumulation and upregulated the above-mentioned marker genes as well as CaWRKY6 and CaWRKY40. Chromatin immunoprecipitation (ChIP) and microscale thermophoresis (MST) analysis revealed that CaHsfB2a bound the promoters of both CaWRKY6 and CaWRKY40. In a parallel experiment, we determined by ChIP-PCR and MST that CaHsfB2a was regulated directly by CaWRKY40 but indirectly by CaWRKY6. Cumulatively, our results suggest that CaHsfB2a positively regulates plant immunity against RSI and tolerance to HTHH, via transcriptional cascades and positive feedback loops involving CaWRKY6 and CaWRKY40.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcy181 | DOI Listing |
BMC Plant Biol
June 2024
Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
Background: Several WRKY transcription factors (TFs), including CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 are known to govern the resistance of pepper (Capsicum annuum L.) plants to Ralstonia solanacearum infestation (RSI) and other abiotic stresses. However, the molecular mechanisms underlying these processes remain elusive.
View Article and Find Full Text PDFInt J Mol Sci
November 2021
Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia.
The WRKY transcription factors (TFs) network is composed of WRKY TFs' subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs' network remain unclear, particularly in non-model plants such as pepper ( L.).
View Article and Find Full Text PDFMicrob Pathog
July 2021
Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China. Electronic address:
Pepper's (Capsicum annum) response to bacterial pathogen Ralstonia solanacearm inoculation (RSI) and abiotic stresses is known to be synchronized by transcriptional network; however, related molecular mechanisms need extensive experimentation. We identified and characterized functions of CabHLH113 -a basic helix-loop-helix transcription factor-in pepper immunity to R. solanacearum infection.
View Article and Find Full Text PDFPlant Cell Physiol
December 2018
Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China.
The responses of pepper (Capsicum annuum) plants to inoculation with the pathogenic bacterium Ralstonia solanacearum and to high-temperature-high-humidity (HTHH) conditions were previously found to be coordinated by the transcription factors CaWRKY6 and CaWRKY40; however, the underlying molecular mechanism was unclear. Herein, we identified and functionally characterized CaHsfB2a, a nuclear-localized heat shock factor involved in pepper immunity to R. solanacearum inoculation (RSI) and tolerance to HTHH.
View Article and Find Full Text PDFInt J Mol Sci
May 2018
Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
The WRKY web, which is comprised of a subset of WRKY transcription factors (TFs), plays a crucial role in the regulation of plant immunity, however, the mode of organization and operation of this network remains obscure, especially in non-model plants such as pepper (). Herein, , a member of a subgroup of IIe WRKY proteins from pepper, was functionally characterized in pepper immunity against . CaWRKY22 was found to target the nuclei, and its transcript level was significantly upregulated by inoculation (RSI) and exogenously applied salicylic acid (SA), Methyl jasmonate (MeJA), or ethephon (ETH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!