Niches for hematopoietic stem cells and immune cell progenitors.

Int Immunol

Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.

Published: February 2019

The special microenvironments, termed niches, with which hematopoietic stem cells (HSCs) are in contact, have been thought to be required for the maintenance of HSCs and the generation of immune cells in bone marrow. Although the identity of the HSC niche has been a subject of long-standing debate, recent findings demonstrate that a population of mesenchymal stem cells, termed CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells or leptin receptor-expressing (LepR+) cells, are the major cellular components of niches for HSCs and lymphoid progenitors, which express specific transcription factors, including Foxc1 and Ebf3, and cytokines, including CXCL12 and stem cell factor (SCF), essential for their niche functions. The identity and functions of other types of cells, including osteoblasts, sinusoidal endothelial cells, periarteriolar cells, megakaryocytes and a population of macrophages in HSC maintenance, have also been shown.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxy058DOI Listing

Publication Analysis

Top Keywords

stem cells
12
cells
9
niches hematopoietic
8
hematopoietic stem
8
stem
4
cells immune
4
immune cell
4
cell progenitors
4
progenitors special
4
special microenvironments
4

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Perianal melanosis.

Br J Dermatol

January 2025

Department of Dermatology, Taiyuan Central Hospital, 030001,Taiyuan, China.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!