Background And Aims: Bird pollination is rare among species in the genus Utricularia, and has evolved independently in two lineages of this genus. In Western Australia, the Western Spinebill, Acanthorhynchus superciliosus, visits flowers of Utricularia menziesii (section Pleiochasia: subgenus Polypompholyx). This study aimed to examine the micromorphology of U. menziesii flowers to assess traits that might be linked to its pollination strategy.
Methods: Light microscopy, histochemistry and scanning electron microscopy were used. Nectar sugar composition was analysed using high-performance liquid chromatography.
Key Results: The flowers of U. menziesii fulfil many criteria that characterize bird-pollinated flowers: red colour, a large, tough nectary spur that can withstand contact with a hard beak, lack of visual nectar guides and fragrance. Trichomes at the palate and throat may act as tactile signals. Spur nectary trichomes did not form clearly visible patches, but were more frequently distributed along vascular bundles, and were small and sessile. Each trichome comprised a single basal cell, a unicellular short pedestal cell (barrier cell) and a multicelled head. These trichomes were much smaller than those of the U. vulgaris allies. Hexose-dominated nectar was detected in flower spurs. Fructose and glucose were present in equal quantities (43 ± 3.6 and 42 ± 3.6 g L-1). Sucrose was only detected in one sample, essentially at the limit of detection for the method used. This type of nectar is common in flowers pollinated by passerine perching birds.
Conclusions: The architecture of nectary trichomes in U. menziesii was similar to that of capitate trichomes of insect-pollinated species in this genus; thus, the most important specializations to bird pollination were flower colour (red), and both spur shape and size modification. Bird pollination is probably a recent innovation in the genus Utricularia, subgenus Polypompholyx, and is likely to have evolved from bee-pollinated ancestors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344090 | PMC |
http://dx.doi.org/10.1093/aob/mcy163 | DOI Listing |
Pest Manag Sci
January 2025
Forest Ecology and Restoration Group (FORECO), Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain.
Background: Biological control in integrated pest management (IPM) often overlooked avian predators until the emergence of the ecosystem services approach. Birds are now recognized as key regulators of pest populations in agroforestry landscapes due to their high mobility. The invasive yellow-legged hornet, introduced into Europe in 2004, threatens agriculture, beekeeping and native pollinators.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFJ Plant Res
December 2024
Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro (JBRJ), Diretoria de Pesquisa Científica, Rio de Janeiro, RJ, 22460-030, Brazil.
Erythrina is a Pantropical bird-pollinated genus of Fabaceae. Thus, its flowers are usually large, showy, red or yellowish, offering nectar as the principal resource. There are two main interaction systems with birds in Erythrina: in one, the inflorescences are erect and the flowers are horizontal, offering no landing platform; in the other, the inflorescences are horizontal and the flower parts are more exposed.
View Article and Find Full Text PDFJ R Soc Interface
November 2024
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK.
Observations of maxillary (upper bill) bending in hummingbirds have been considered an optical illusion, yet a recent description of out-of-phase opening and closing between their bill base and tip suggests a genuine capacity for bill bending. We investigate bill kinematics during nectar feeding in six species of hummingbirds. We employed geometric morphometrics to identify bending zones and combined these data with measurements of bill flexural rigidity from micro-computed tomography scans to better understand the flexing mechanism.
View Article and Find Full Text PDFAbstractPollen grains from different plants potentially compete for ovule access because flowers produce many more pollen grains than ovules. Pollen competition could occur on pollinators, where there is finite space for pollen placement. Here, we explore the explosive pollen deposition in (Lamiaceae, a perennial flowering plant native to South America that is frequently visited by hummingbirds) and determine whether it can improve male performance by reducing pollen loads deposited by previously visited flowers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!