Concerted Metal Cation Desorption and Proton Transfer on Deprotonated Silica Surfaces.

J Phys Chem Lett

Sandia National Laboratories , MS 1415 & 0754, Albuquerque , New Mexico 87185 , United States.

Published: September 2018

The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption-desorption is often proposed to occur in concert with proton transfer on hydroxyl-covered mineral surfaces, but to date this cooperative effect has been inferred indirectly. This work applies density functional theory-based molecular dynamics simulations of explicit liquid water/mineral interfaces to calculate metal ion desorption free energies. Monodentate adsorption of Na, Mg, and Cu on partially deprotonated silica surfaces are considered. Na is predicted to be unbound, while Cu exhibits binding free energies to surface SiO groups that are larger than those of Mg. The predicted trends agree with competitive adsorption measurements on fumed silica surfaces. As desorption proceeds, Cu dissociates one of the HO molecules in its first solvation shell, turning into Cu(OH)(HO), while Mg remains Mg(HO). The protonation state of the SiO group at the initial binding site does not vary monotonically with cation desorption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.8b02173DOI Listing

Publication Analysis

Top Keywords

silica surfaces
12
cation desorption
8
proton transfer
8
deprotonated silica
8
free energies
8
surfaces
5
concerted metal
4
metal cation
4
desorption
4
desorption proton
4

Similar Publications

A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.

View Article and Find Full Text PDF

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

Heterogeneous dynamics in aging phosphate-based geopolymer.

J Chem Phys

January 2025

Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic.

The time-evolution of dynamics as well as microstructure and mechanical response of phosphate-based geopolymers was probed using x-ray photon correlation spectroscopy and rheological tests. The analyzed relaxation processes in the freshly prepared geopolymer mixes evidenced a q-independent mode of the autocorrelation function, ascribed to density fluctuations of the already established molecular network, undergoing reconfiguration without significant mass transport. Upon curing, the detected motions are localized and depict a system evolving toward structural arrest dominated by slower hyperdiffusive dynamics, characterized by a compressed exponential regime, pointing to a structural relaxation process subjected to internal stresses, in a context of marked dynamical and structural heterogeneity.

View Article and Find Full Text PDF

A novel silica-based material (SBM), synthesized from chemically-, thermally-, and mechanically-treated blast furnace slag (TBFS), was examined for its batch-mode lead adsorption capacity based on various parameters. Physicochemical examinations revealed that the formulation of the new SBM consisted mainly of silica, which represented 81.79% of its total composition.

View Article and Find Full Text PDF

Fracture load of feldspar ceramic crowns: effects of surface treatments and aging.

Clin Oral Investig

January 2025

Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.

Objectives: To compare the impact of intaglio surface treatments - airborne particle abrasion and hydrofluoric acid (HF) etching - of feldspar ceramic (FEL) crowns on the fracture load (FL) and to investigate the effects of abutment materials and artificial aging. The aim was to assess whether etching could be replaced by an alternative surface roughening method.

Materials And Methods: FEL crowns had their intaglio surfaces either abraded (25 µm AlO, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!