A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Machine Learning Approaches with a General Linear Model To Predict Personal Exposure to Benzene. | LitMetric

Comparison of Machine Learning Approaches with a General Linear Model To Predict Personal Exposure to Benzene.

Environ Sci Technol

Division of Environmental Health and Risk Management School of Geography, Earth and Environmental Sciences , University of Birmingham, Edgbaston, Birmingham , B15 2TT , United Kingdom.

Published: October 2018

Machine learning techniques (MLTs) offer great power in analyzing complex data sets and have not previously been applied to non-occupational pollutant exposure. MLT models that can predict personal exposure to benzene have been developed and compared with a standard model using a linear regression approach (GLM). The models were tested against independent data sets obtained from three personal exposure measurement campaigns. A correlation-based feature subset (CFS) selection algorithm identified a reduced attribute set, with common attributes grouped under the use of paints in homes, upholstery materials, space heating, and environmental tobacco smoke as the attributes suitable to predict the personal exposure to benzene. Personal exposure was categorized as low, medium, and high, and for big data sets, both the GLM and MLTs show high variability in performance to correctly classify greater than 90 percentile concentrations, but the MLT models have a higher score when accounting for divergence of incorrectly classified cases. Overall, the MLTs perform at least as well as the GLM and avoid the need to input microenvironment concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b03328DOI Listing

Publication Analysis

Top Keywords

personal exposure
20
predict personal
12
exposure benzene
12
data sets
12
machine learning
8
mlt models
8
exposure
6
personal
5
comparison machine
4
learning approaches
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!