Advances in two-dimensional semiconducting thin films enable the realization of wearable electronic devices in the form factor of flexible substrate/thin films that can be seamlessly adapted in our daily lives. For wearable gas sensing, two-dimensional materials, such as SnSe, are particularly favorable because of their high surface-to-volume ratio and strong adsorption of gas molecules. Chemical vapor deposition and liquid/mechanical exfoliation are the widely applied techniques to obtain SnSe thin films. However, these methods normally result in non-uniform and isolated flakes which cannot apply to the practical industrial-scale wearable electronic devices. Here, we demonstrate large-scale (10 cm × 10 cm), uniform, and self-standing SnSe nanoplate arrays by co-evaporation process on flexible polyimide substrates. Both structural and morphological properties of the resulting SnSe nanoplates are systematically investigated. Particularly, the single-crystalline SnSe nanoplates are achieved. Furthermore, we explore the application of the polyimide/SnSe nanoplate arrays as wearable gas sensors for detecting methane. The wearable gas sensors show high sensitivity, fast response and recovery, and good uniformity. Our approach not only provides an efficient technique to obtain large-area, uniform and high-quality single-crystalline SnSe nanoplates, but also impacts on the future developments of layered metal dichalcogenides-based wearable devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aade32 | DOI Listing |
Nano Lett
January 2025
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Achieving high flexibility, breathability, and sensitivity in inorganic semiconductor gas sensors remains a substantial challenge, especially for wearable applications in high-humidity environments. This study develops a hyper-flexible, thermally stable, and highly breathable full-inorganic, self-supporting InGaO-AlO/AlO nanofiber membrane sensor, fabricated using a dual-spinneret electrospinning method with an interlocking design. This innovative sensor has a bilayer structure with an amorphous AlO nanofiber substrate layer supporting an active layer of high-aspect-ratio interwoven InGaO and AlO nanofibers, providing outstanding flexibility, elevated breathability, and strong thermal stability.
View Article and Find Full Text PDFAdv Mater
January 2025
Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China.
Textiles have played a pivotal role in human development, evolving from basic fibers into sophisticated, multifunctional materials. Advances in material science, nanotechnology, and electronics have propelled next-generation textiles beyond traditional functionalities, unlocking innovative possibilities for diverse applications. Thermal management textiles incorporate ultralight, ultrathin insulating layers and adaptive cooling technologies, optimizing temperature regulation in dynamic and extreme environments.
View Article and Find Full Text PDFFront Physiol
December 2024
The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States.
Insight into human physiology is key to maintaining diver safety in underwater operational environments. Numerous hazardous physiological phenomena can occur during the descent, the time at depth, the ascent, and the hours after a dive that can have enduring consequences. While safety measures and strict adherence to dive protocols make these events uncommon, diving disorders still occur, often with insufficient understanding of the factors that triggered the event.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China. Electronic address:
Conductive hydrogels are utilized in flexible sensors due to their high-water content, excellent elasticity, and shape controllability. However, the sharp increase in resistance of this material under enormous strain leads to instability in the sensing process. This study presents a straightforward method for creating a stable, recyclable, hybrid ionic-electronic conductive (HIEC) hydrogel via a simple one-pot strategy using polyvinyl alcohol (PVA), bagasse cellulose nanofibrils (CNF), and graphene(G) with sodium dodecylbenzene sulfonate (SDBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!