Notch signaling regulates arterial vasoreactivity through opposing functions of Jagged1 and Dll4 in the vessel wall.

Am J Physiol Heart Circ Physiol

Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio.

Published: December 2018

Functional interactions between endothelial cells (ECs) and smooth muscle cells (SMCs) in the arterial wall are necessary for controlling vasoreactivity that underlies vascular resistance and tone. Key signaling pathways converge on the phosphorylation of myosin light chain (p-MLC), the molecular signature of force production in SMCs, through coordinating the relative activities of myosin light chain kinase (MLCK) and myosin phosphatase (MP). Notch signaling in the vessel wall serves critical roles in arterial formation and maturation and has been implicated in arterial vasoregulation. In this report, we hypothesized that Notch signaling through ligands Jagged1 (in SMCs) and delta-like protein-4 (Dll4; in ECs) regulates vasoreactivity via homotypic (SMC-SMC) and heterotypic (EC-SMC) cell interactions. Using ligand induction assays, we demonstrated that Jagged1 selectively induced smooth muscle MLCK gene expression and p-MLC content while inhibiting MP function (i.e., increased Ca sensitization) in a Rho kinase II-dependent manner. Likewise, selective deficiency of smooth muscle Jagged1 in mice resulted in MLCK and p-MLC loss, reduced Ca sensitization, and impaired arterial force generation measured by myography. In contrast, smooth muscle Notch signaling triggered by Dll4 increased expression of MP-targeting subunit 1 (MYPT1; the MP regulatory subunit), whereas arteries from endothelial Dll4-deficient mice featured reduced MYPT1 levels, enhanced force production, and impaired relaxation independent of endothelium-derived nitric oxide signaling. Taken together, this study identifies novel opposing vasoregulatory functions for ligand-specific Notch signaling in the vessel wall, underscoring instructional signaling between ECs and SMCs and suggesting that Notch signals might behave as a "rheostat" in arterial tone control. NEW & NOTEWORTHY The present study unveils novel roles for ligand-specific Notch signaling in arterial function. Smooth muscle Jagged1 and endothelial cell delta-like protein-4 ligands exhibit selective regulation of myosin light chain kinase and myosin phosphatase-targeting subunit 1/myosin phosphatase, respectively, providing a mechanistic link through which Notch signals modulate contractile activities in vascular smooth muscle. These findings may inform vascular derangements observed in human syndromes of Notch signaling deficiency while offering fundamental molecular insights into arterial physiological function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336965PMC
http://dx.doi.org/10.1152/ajpheart.00293.2018DOI Listing

Publication Analysis

Top Keywords

notch signaling
28
smooth muscle
24
vessel wall
12
myosin light
12
light chain
12
notch
9
signaling
9
arterial
8
force production
8
chain kinase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!