Biomass processing wastes (humins) are anticipated to become a large-tonnage solid waste in the near future, owing to the accelerated development of renewable technologies based on utilization of carbohydrates. In this work, the utility of humins as a feedstock for the production of activated carbon by various methods (pyrolysis, physical and chemical activation, or combined approaches) was evaluated. The obtained activated carbons were tested as potential electrode materials for supercapacitor applications and demonstrated combined micro- and mesoporous structures with a good capacitance of 370 F g (at a current density of 0.5 A g ) and good cycling stability with a capacitance retention of 92 % after 10 000 charge/discharge cycles (at 10 A g in 6 m aqueous KOH electrolyte). The applicability of the developed activated carbon for practical usage as a supercapacitor electrode material was demonstrated by its successful utilization in symmetric two-electrode cells and by powering electric devices. These findings provide a new approach to deal with the problem of sustainable wastes utilization and to advance challenging energy storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201801757DOI Listing

Publication Analysis

Top Keywords

activated carbons
8
supercapacitor electrode
8
electrode materials
8
activated carbon
8
sustainable utilization
4
utilization biomass
4
biomass refinery
4
refinery wastes
4
wastes accessing
4
activated
4

Similar Publications

Future runoff trends in the mang river basin of China: Implications of carbon emission paths.

J Environ Manage

December 2024

College of Forestry, Guizhou University, Guiyang, 550025, China; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. Electronic address:

In recent years, the rapid development of the global economy has led to an increasing impact of the ongoing climate warming phenomenon on the hydrological cycle. In this context, the runoff changes affected by human activities are more severe. This study classifies climate scenarios based on carbon emission levels into "low-carbon" (SSP1-2.

View Article and Find Full Text PDF

The extraction of mineral deposits is often associated with the occurrence of acid mine drainage (AMD), which can persist even after mine closure due to remaining sulfide minerals. This study investigates a 200-year-old abandoned mine and its impacts on nearby water resources. The study area is well known for Kuroko ore deposits located upstream of spring and river water resources.

View Article and Find Full Text PDF

Phenotypic Plasticity During Organofluorine Degradation Revealed by Adaptive Evolution.

Microb Biotechnol

December 2024

Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, USA.

A major factor limiting the biodegradation of organofluorine compounds has been highlighted as fluoride anion toxicity produced by defluorinating enzymes. Here, two highly active defluorinases with different activities were constitutively expressed in Pseudomonas putida ATCC 12633 to examine adaption to fluoride stress. Each strain was grown on α-fluorophenylacetic acid as the sole carbon source via defluorination to mandelic acid, and each showed immediate fluoride release and delayed growth.

View Article and Find Full Text PDF

Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of TiC(OH)-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation.

View Article and Find Full Text PDF

Epitaxy Orientation and Kinetics Diagnosis for Zinc Electrodeposition.

ACS Nano

December 2024

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China.

An accurate assessment of the electrodeposition mechanism is essential for evaluating the electrochemical stability and reversibility of the metal anodes. Multiple strategies aimed at uniform Zn deposition have been extensively reported, yet it is challenging to clarify the Zn crystal growth regularity and activity due to the obscured physicochemical properties of as-deposited Zn. Herein, we present a protocol for elucidating the controlled epitaxial growth process of Zn crystals and quantifying their surface electrochemical activity using scanning electrochemical microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!