Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Improving the charge-carrier mobility of conjugated polymers is important for developing high-performance, solution-processed optoelectronic devices. Although [1]benzothieno[3,2- b]benzothiophene (BTBT) has been frequently used as a high-performance p-type small molecular semiconductor and employed a few times as a building block for p-type conjugated polymers, it has never been explored as a donor moiety for high-performance n-type conjugated polymers. Here, BTBT has been conjugated with either n-type perylene diimide (PDI) or naphthalene diimide (NDI) units to generate a donor-acceptor copolymer backbone, for the first time. Charge-transport measurements of organic field-effect transistors show n-type dominant behaviors, with the electron mobility reaching ∼0.11 cm V s for PDI-BTBT and ∼0.050 cm V s for NDI-BTBT. The PDI-BTBT mobility value is one of the highest among the PDI-containing polymers. The high π-π stacking propensity of BTBT significantly improves the charge-carrier mobility in these polymers, as supported by atomic force microscopy and grazing incidence X-ray diffraction analyses. Phototransistor applications of these polymers in the n-type mode show highly sensitive photoresponses. Our findings demonstrate that incorporation of the BTBT donor unit within the rylene diimide acceptor-based conjugated polymers can improve the molecular ordering and electron mobility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b10831 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!