Glucocorticoids exert differential effects on the endothelium in an in vitro model of the blood-retinal barrier.

Acta Ophthalmol

Departments of Ophthalmology and Medical Biology, Amsterdam UMC, University of Amsterdam, Ocular Angiogenesis Group, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam, The Netherlands.

Published: March 2019

Purpose: Glucocorticoids (GCs) are used as treatment in diabetic macular oedema, a condition caused by blood-retinal barrier (BRB) disruption. The proposed mechanisms by which GCs reduce macular oedema are indirect anti-inflammatory effects and inhibition of VEGF production, but direct effects on the BRB endothelium may be equally important. Here, we investigated direct effects of GCs on the endothelium to understand the specific pathways of GC action, to enable development of novel therapeutics lacking the adverse side-effects of the presently used GCs.

Methods: Primary bovine retinal endothelial cells (BRECs) were grown on Transwell inserts and treated with hydrocortisone (HC), dexamethasone (Dex) or triamcinolone acetonide (TA). Molecular barrier integrity of the BRB was determined by mRNA and protein expression, and barrier function was assessed using permeability assays. In addition, we investigated whether TA was able to prevent barrier disruption after stimulation with VEGF or cytokines.

Results: Treatment of BRECs with GCs resulted in upregulation of tight junction mRNA (claudin-5, occludin, ZO-1) and protein (claudin-5 and ZO-1). In functional assays, only TA strengthened the barrier function by reducing endothelial permeability. Moreover, TA was able to prevent cytokine-induced permeability in human retinal endothelial cells and VEGF-induced expression of plasmalemma vesicle-associated protein (PLVAP), a key player in VEGF-induced retinal vascular leakage.

Conclusion: Glucocorticoids have differential effects in an experimental in vitro BRB model. TA is the most potent in improving barrier function, both at the molecular and functional levels, and TA prevents VEGF-induced expression of PLVAP.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aos.13909DOI Listing

Publication Analysis

Top Keywords

barrier function
12
differential effects
8
blood-retinal barrier
8
macular oedema
8
direct effects
8
retinal endothelial
8
endothelial cells
8
vegf-induced expression
8
barrier
7
effects
5

Similar Publications

Background: The use of telemonitoring to manage renal function in patients with chronic kidney disease (CKD) is recommended by health authorities. However, despite these recommendations, the adoption of telemonitoring by both health care professionals and patients faces numerous challenges.

Objective: This study aims to identify barriers and facilitators in the implementation of a telemonitoring program for patients with CKD, as perceived by health care professionals and patients, and to explore factors associated with the adoption of the program.

View Article and Find Full Text PDF

Microplastics in the bloodstream can induce cerebral thrombosis by causing cell obstruction and lead to neurobehavioral abnormalities.

Sci Adv

January 2025

State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.

Human health is being threatened by environmental microplastic (MP) pollution. MPs were detected in the bloodstream and multiple tissues of humans, disrupting the regular physiological processes of organs. Nanoscale plastics can breach the blood-brain barrier, leading to neurotoxic effects.

View Article and Find Full Text PDF

Cardiac rehabilitation (CR) is a cornerstone of heart disease (HD) management, enhancing functional capacity and quality of life. Hybrid cardiac rehabilitation (hCR), combining supervised center-based sessions with synchronous, real-time telerehabilitation at home, offers an alternative to conventional CR to overcome logistical barriers such as facility limitations, distance, and pandemic-related disruptions. This randomized controlled trial evaluated the noninferiority of hCR compared to standard CR in improving functional capacity in patients with chronic heart disease, including those with stable coronary artery disease.

View Article and Find Full Text PDF

Hypoxia as a medicine.

Sci Transl Med

January 2025

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.

Oxygen is essential for human life, yet a growing body of preclinical research is demonstrating that chronic continuous hypoxia can be beneficial in models of mitochondrial disease, autoimmunity, ischemia, and aging. This research is revealing exciting new and unexpected facets of oxygen biology, but translating these findings to patients poses major challenges, because hypoxia can be dangerous. Overcoming these barriers will require integrating insights from basic science, high-altitude physiology, clinical medicine, and sports technology.

View Article and Find Full Text PDF

Unfolding of von Willebrand Factor Type D Like Domains Promotes Mucin Adhesion.

Nano Lett

January 2025

Department of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.

Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!