Once one sees a pattern, it is challenging to "unsee" it; discovering structure alters processing. Precisely what changes as this happens is unclear, however. We probed this question by tracking changes in attention as viewers discovered statistical patterns within unfolding event sequences. We measured viewers' "dwell times" (e.g., Hard, Recchia, & Tversky, 2011) as they advanced at their own pace through a series of still-frame images depicting a sequence of event segments ("actions") that were discoverable only via sensitivity to statistical regularities among the component motion elements. "Knowledgeable" adults, who had had the opportunity to learn these statistical regularities prior to the slideshow viewing, displayed dwell-time patterns indicative of sensitivity to the statistically defined higher-level segmental structure; "naïve" adults, who lacked the opportunity for prior viewing, did not. These findings clarify that attention reorganizes in conjunction with statistically guided discovery of segmental structure within continuous human activity sequences. As patterns emerge in the mind, attention redistributes selectively to target boundary regions, perhaps because they represent highly informative junctures of "predictable unpredictability."
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13421-018-0847-z | DOI Listing |
Langmuir
January 2025
Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing 400030, China.
Protein adsorption on biomaterials occurs before cell adhesion. To adapt the properties of biomaterials, adhered cells may utilize and modify adsorbed proteins for survival and function. In this process, the protein-material interfacial force () is supposed to play vital roles, which, however, has received little attention.
View Article and Find Full Text PDFJ Clin Neurosci
January 2025
Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China. Electronic address:
Background: Cervical spondylotic myelopathy (CSM) is a debilitating condition that affects the cervical spine, leading to neurological impairments. While the neural mechanisms underlying CSM remain poorly understood, changes in brain network connectivity, particularly within the context of static and dynamic functional network connectivity (sFNC and dFNC), may provide valuable insights into disease pathophysiology. This study investigates brain-wide connectivity alterations in CSM patients using both sFNC and dFNC, combined with machine learning approaches, to explore their potential as biomarkers for disease classification and progression.
View Article and Find Full Text PDFActa Biomater
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.
View Article and Find Full Text PDFClin Rehabil
January 2025
School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
Objective: To map evidence on the characteristics, effectiveness, and potential mechanisms of motor imagery interventions targeting cognitive function and depression in adults with neurological disorders and/or mobility impairments.
Data Sources: Six English databases (The Cochrane Library, PubMed, Embase, Scopus, Web of Sciences, and PsycINFO), two Chinese databases (CNKI and WanFang), and a gray literature database were searched from inception to December 2024.
Review Methods: This scoping review followed the Joanna Briggs Institute Scoping Review methodology.
Phys Chem Chem Phys
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China.
In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!