Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new method for obtaining biomodified magnetite nanoparticles for targeted delivery to cells was developed. The method is based on the use of the C-terminal fragment of the Mms6 protein, which is involved in the magnetite biomineralization during the synthesis of magnetosomes in magnetotactic bacteria Magnetospirillum magneticum AMB-1, and the barnase*barstar high-affinity protein pair. The Mms6 protein fragment is required for stabilizing magnetite, and the barnase*barstar pair mediates the interaction between nanoparticles and the component for modification. The efficiency of this method was confirmed in the synthesis of magnetite nanoparticles recognizing the HER2/neu tumor marker and in the selective labeling of HER2/neu with these nanoparticles on the surface of cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S1607672918040051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!