Nickel-titanium alloy (nitinol, NiTi) is a biomaterial with unique thermal shape memory, superelasticity and high damping properties. Therefore NiTi has been used in medical applications. In this in vitro study, the effect of NiTi alloy (with two surface modifications - helium and hydrogen) on gene expression profile of selected interleukins (IL-1β, IL-6 and IL-8) and matrix metalloproteinases (MMP-1 and MMP-2) in human physiological osteoblasts and human osteoarthritic osteoblasts was examined to respond to a question of the different behavior of bone tissue in the implantation of metallic materials in the presence of cells affected by the osteoarthritic process. The cells were cultivated in contact with NiTi and with or without LPS (bacterial lipolysaccharide). Changes in expression of target genes were calculated by 2 method. An increased gene expression of IL-1β in osteoarthritic osteoblasts, with even higher expression in cells collected directly from the metal surface was observed. In case of physiological osteoblasts, the change in expression was detected after LPS treatment in cells surrounding the disc. Higher expression levels of IL-8 were observed in osteoarthritic osteoblasts after NiTi treatment in contact with alloy, and in physiological osteoblasts without relation to location in combination of NiTi and LPS. IL-6 was slightly increased in physiological osteoblastes after application of LPS. MMP-1 expression level was obviously significantly higher in osteoarthritic osteoblasts with differences regarding the metal surface and location. MMP-2 expression was decreased in both cell lines after LPS treatment. In conclusion, results of present study show that the NiTi alloy and the treatment by LPS, especially repeated doses of LPS, change the gene expression of selected ILs and MMPs in human osteoblast cell cultures. Some of the changes were depicted solely to osteoarthritic osteoblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-018-6156-z | DOI Listing |
Sci Rep
November 2024
Paris Cité University CNRS INSERM, B3OA, UMR 7052, U 1271, 10 avenue de Verdun, Paris, 75010, France.
Front Endocrinol (Lausanne)
November 2024
Biomechanics and Bioengineering Research Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
Osteoarthritic (OA) pain affects 18% of females and 9.6% of males aged over 60 worldwide, with 62% of all OA patients being women. The molecular drivers of sex-based differences in OA are unknown.
View Article and Find Full Text PDFSci Rep
July 2024
Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic.
Nickel(Ni)-containing materials have been widely used in a wide range of medical applications, including orthopaedics. Despite their excellent properties, there is still a problem with the release of nickel ions into the patient's body, which can cause changes in the behaviour of surrounding cells and tissues. This study aims to evaluate the effects of Ni on bone cells with an emphasis on the determination of Ni localization in cellular compartments in time.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Osteoarthritis is a highly prevalent progressive joint disease that still requires an optimal therapeutic approach. Intermittent fasting is an attractive dieting strategy for improving health. Here this study shows that intermittent fasting potently relieves medial meniscus (DMM)- or natural aging-induced osteoarthritic phenotypes.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2024
School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China.
Objectives: Wnt5a, which regulates the activities of osteoblasts and osteoclasts, is reportedly overexpressed in osteoarthritis (OA) tissues. The purpose of this study was to elucidate its role in the development of OA by deleting Wnt5a in osteocalcin (OCN)-expressing cells.
Materials And Methods: Knee OA was induced by anterior cruciate ligament transection (ACLT) in knockout (Wnt5a-cKO) mice and control littermates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!