Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111039PMC
http://dx.doi.org/10.1016/j.trci.2018.03.008DOI Listing

Publication Analysis

Top Keywords

neurodegeneration advances
4
advances clinical
4
clinical translational
4
translational neuroscience
4
neuroscience infrastructure
4
infrastructure methods
4
neurodegeneration
1
clinical
1
translational
1
neuroscience
1

Similar Publications

Electric-field induced sleep promotion and lifespan extension in Gaucher's disease model flies.

Biochem Biophys Rep

March 2025

Institute for Chronobiology, Foundation for Advancement of International Science (FAIS), 3-24-16 Kasuga, Tsukuba, Ibaraki, 305-0812, Japan.

Gaucher's disease (GD) is a genetic disease characterized by a mutation in the metabolic enzyme glucocerebrosidase (GBA1), leading to the accumulation of glucosylceramide in tissues. We previously discovered that a -inserted mutation in the gene of fruit flies, , mimics human neuronopathic GD (nGD) characteristics, providing a promising model for studying the molecular mechanisms of the disease. We also reported that extremely low-frequency electric fields (ELF-EFs) promote sleep and extend the lifespan of wild-type flies.

View Article and Find Full Text PDF

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Recent advancements in the understanding of the alterations in mitochondrial biogenesis in Alzheimer's disease.

Mol Biol Rep

January 2025

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.

View Article and Find Full Text PDF

The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.

View Article and Find Full Text PDF

Glia contribute to the neuropathology of Parkinson disease (PD), but how they react opposingly to be beneficial or detrimental under pathological conditions, like promoting or eliminating SNCA/α-syn (synuclein alpha) inclusions, remains elusive. Here we present evidence that aux (auxilin), the homolog of the PD risk factor GAK (cyclin G associated kinase), regulates the lysosomal degradation of SNCA/α-syn in glia. Lack of glial GAK/aux increases the lysosome number and size, regulates lysosomal acidification and hydrolase activity, and ultimately blocks the degradation of substrates including SNCA/α-syn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!