This paper reports a simple and economical method for the fabrication of nanopatterned optical fiber nanotips. The proposed patterning approach relies on the use of the nanosphere lithography of the optical fiber end facet. Polystyrene (PS) nanospheres are initially self-assembled in a hexagonal array on the surface of water. The created pattern is then transferred onto an optical fiber tip (OFT). The PS monolayer colloidal crystal on the OFT is the basic building block that is used to obtain different periodic structures by applying further treatment to the fiber, such as metal coating, nanosphere size reduction and sphere removal. Ordered dielectric and metallo-dielectric sphere arrays, metallic nanoisland arrays and hole-patterned metallic films with feature sizes down to the submicron scale are achievable using this approach. Furthermore, the sizes and shapes of these periodic structures can be tailored by altering the fabrication conditions. The results indicate that the proposed self-assembly approach is a valuable route for the development of highly repeatable metallo-dielectric periodic patterns on OFTs with a high degree of order and low fabrication cost. The method can be easily extended to simultaneously produce multiple fibers, opening a new route to the development of fiber-optic nanoprobes. Finally, we demonstrate the effective application of the patterned OFTs as surface-enhanced Raman spectroscopy nanoprobes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062194PMC
http://dx.doi.org/10.1038/lsa.2016.229DOI Listing

Publication Analysis

Top Keywords

optical fiber
16
nanosphere lithography
8
lithography optical
8
periodic structures
8
route development
8
fiber
5
optical
4
fiber nanoprobes
4
nanoprobes paper
4
paper reports
4

Similar Publications

Track Deflection Monitoring for Railway Construction Based on Dynamic Brillouin Optical Time-Domain Reflectometry.

Sensors (Basel)

December 2024

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510630, China.

Real-time online monitoring of track deformation during railway construction is crucial for ensuring the safe operation of trains. However, existing monitoring technologies struggle to effectively monitor both static and dynamic events, often resulting in high false alarm rates. This paper presents a monitoring technology for track deformation during railway construction based on dynamic Brillouin optical time-domain reflectometry (Dy-BOTDR), which effectively meets requirements in the monitoring of both static and dynamic events of track deformation.

View Article and Find Full Text PDF

Free-Space to SMF Integration and Green to C-Band Conversion Based on PPLN.

Sensors (Basel)

December 2024

Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan.

In this study, we experimentally demonstrate a PPLN-based free-space to SMF (single-mode fiber) conversion system capable of efficient long-wavelength down-conversion from 518 nm, optimized for minimal loss in highly turbid water, to 1540 nm, which is ideal for low-loss transmission in standard SMF. Leveraging the nonlinear optical properties of periodically poled lithium niobate (PPLN), we achieve a wavelength conversion efficiency of 1.6% through difference frequency generation while maintaining a received optical signal-to-noise ratio of 10.

View Article and Find Full Text PDF

Ultra-High Sensitivity Methane Gas Sensor Based on Cryptophane-A Thin Film Depositing in Double D-Shaped Photonic Crystal Fiber Using the Vernier Effect.

Sensors (Basel)

December 2024

State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.

Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same.

View Article and Find Full Text PDF

(1) Background: Ultra-high dose rate (UHDR) radiation therapy needs a reliable dosimetry solution and scintillation detectors are promising candidates. In this study, we characterized an inorganic powder-based scintillation detector under a 9 MeV UHDR electron beam. (2) Methods: A mixture of ZnS:Ag powder and optic glue was coupled to an 8 m Eska GH-4001-P polymethyl methacrylate (PMMA) optical fiber.

View Article and Find Full Text PDF

Smart concrete is a structural element that can combine both sensing and structural capabilities. In addition, smart concrete can monitor the curing of concrete, positively impacting design and construction approaches. In concrete, if the curing process is not well developed, the structural element may develop cracks in this early stage due to shrinkage, decreasing structural mechanical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!