Light-emitting diodes (LEDs) are driving a shift toward energy-efficient illumination. Nonetheless, modifying the emission intensities, colors and directionalities of LEDs in specific ways remains a challenge often tackled by incorporating secondary optical components. Metallic nanostructures supporting plasmonic resonances are an interesting alternative to this approach due to their strong light-matter interaction, which facilitates control over light emission without requiring external secondary optical components. This review discusses new methods that enhance the efficiencies of LEDs using nanostructured metals. This is an emerging field that incorporates physics, materials science, device technology and industry. First, we provide a general overview of state-of-the-art LED lighting, discussing the main characteristics required of both quantum wells and color converters to efficiently generate white light. Then, we discuss the main challenges in this field as well as the potential of metallic nanostructures to circumvent them. We review several of the most relevant demonstrations of LEDs in combination with metallic nanostructures, which have resulted in light-emitting devices with improved performance. We also highlight a few recent studies in applied plasmonics that, although exploratory and eminently fundamental, may lead to new solutions in illumination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059959 | PMC |
http://dx.doi.org/10.1038/lsa.2016.80 | DOI Listing |
Nano Lett
January 2025
School of Environment, Tsinghua University, Beijing 100084, China.
Exploiting cost-effective hydrogen evolution reaction (HER) catalysts is crucial for sustainable hydrogen production. However, currently reported nanocatalysts usually cannot simultaneously sustain high catalytic activity and long-term durability. Here, we report the efficient synthesis and activity tailoring of a chainmail catalyst, isolated platinum atom anchored tungsten carbide nanocrystals encapsulated inside carbon nanotubes (Pt/WC@CNTs), by confined flash Joule heating technique.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
Growing global population, escalating energy consumption, and climate change threaten future energy security. Fossil fuel combustion, primarily coal, oil, and natural gas, exacerbates the greenhouse effect driving global warming through CO emissions. To address such issues, research is focused on converting CO into valuable fuels and chemicals, which aims to reduce noxious CO and simultaneously bridge the gap between energy demands and sustainable supply.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
Conventional solid/liquid electrochemical interfaces typically encounter challenges with impeded mass transport for poor electrochemical quantification due to the intricate pathways of reactants from the bulk solution. To address this issue, this work reports an innovative approach integrating a target-activated DNA framework nanomachine with electrochemically driven metal-organic framework (MOF) conversion for self-sacrificial biosensing. The presence of the target biomarker serotonin initiates the DNA framework nanomachine by an entropy-driven circuit to form a cross-linked nanostructure and subsequently release the Fe-MOF probe.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
The controllable synthesis of epitaxial nanopillar arrays is fundamentally important to the development of advanced electrical and optical devices. However, this fascinating growth method has rarely been applied to the bottom-up synthesis of plasmonic nanostructure arrays (PNAs) with many broad, important, and promising applications in optical sensing, nonlinear optics, surface-enhanced spectroscopies, photothermal conversion, photochemistry, etc. Here, a one-step epitaxial approach to single-crystalline NbTiN (NbTiN) nanopillar arrays based on the layer plus island growth mode is demonstrated by strain engineering.
View Article and Find Full Text PDFACS Appl Opt Mater
December 2024
Department of Physics, Umeå University, Linnaeus väg 24, 901 87 Umeå, Sweden.
Multilayered metal-dielectric nanostructures display both a strong plasmonic behavior and hyperbolic optical dispersion. The latter is responsible for the appearance of two separated radiative and nonradiative channels in the extinction spectrum of these structures. This unique property can open plenty of opportunities toward the development of multifunctional systems that simultaneously can behave as optimal scatterers and absorbers at different wavelengths, an important feature to achieve multiscale control of light-matter interactions in different spectral regions for different types of applications, such as optical computing or detection of thermal radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!