We introduce an extremely simple and highly stable system for stimulated Raman scattering (SRS) microscopy. An 8-W, 450-fs Yb:KGW bulk oscillator with 41 MHz repetition rate pumps an optical parametric amplifier, which is seeded by a cw tunable external cavity diode laser. The output radiation is frequency doubled in a long PPLN crystal and generates 1.5-ps long narrowband pump pulses that are tunable between 760 and 820 nm with >50 mW average power. Part of the oscillator output is sent through an etalon and creates Stokes pulses with 100 mW average power and 1.7 ps duration. We demonstrate SRS microscopy at a 30-μs pixel dwell time with high chemical contrast, signal-to-noise ratio in excess of 45 and no need for balanced detection, thanks to the favorable noise properties of the bulk solid-state system. Cw seeding intrinsically ensures low spectral drift. We discuss its application to chemical contrast microscopy of freshly prepared plant tissue sections at different vibrational bands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059832PMC
http://dx.doi.org/10.1038/lsa.2016.149DOI Listing

Publication Analysis

Top Keywords

system stimulated
8
stimulated raman
8
raman scattering
8
srs microscopy
8
average power
8
chemical contrast
8
synchronization-free all-solid-state
4
all-solid-state laser
4
laser system
4
microscopy
4

Similar Publications

Research and development of new intelligent foaming and discharging agent system.

Sci Rep

December 2024

Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, 430100, China.

The application of classic foaming agent faces several issues, including excessive use of defoaming agent, inadequate defoaming, pipeline blockage due to silicone oil precipitation, and high development cost of the foaming agent. To address the aforementioned issues, a novel intelligent foaming agent was created. This resulted in the development of a new intelligent foaming and discharging agent system.

View Article and Find Full Text PDF

Tissue growth as a mechanism for collagen fiber alignment in articular cartilage.

Sci Rep

December 2024

Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, Eindhoven, 5600 MB, The Netherlands.

Articular cartilage is distinguished by the unique alignment of type II collagen, a feature crucial for its mechanical properties and function. This characteristic organization is established during postnatal development of the tissue, yet the underlying mechanisms remain poorly understood. In this study, a potential mechanism for type II collagen alignment by cartilage-specific growth from within the tissue was investigated.

View Article and Find Full Text PDF

The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).

View Article and Find Full Text PDF

In this study, we investigated gene expression in vitro of human primary Aortic smooth muscle cells (AoSMCs) in response to 9% physiological dynamic stretch over a 4 to 72-h timeframe using RT-qPCR. AoSMC were derived from primary culture and were exposed to continuous cycles of stretch and relaxation at 1 Hz by a computer-controlled Flex Jr.™ Tension System.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Hyperthyroidism is a prevalent clinical endocrine disorder. Danggui Liuhuang Decoction (DGLHD), a traditional Chinese herbal medicine formula, has shown potential benefits for patients with hyperthyroidism in recent studies. However, the clinical efficacy and safety of DGLHD have not been systematically evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!