species complex is considered as important emerging pathogens and little is known about their pathogenicity factors and co-hemolytic activity with different bacteria species. The aim of this study was to determine exoenzyme activities, biofilm formation, and co-hemolytic effect of different bacteria species on clinical complex isolates. In total, 67 complex isolates consist of 63/67 and 4/67 were used in this study. To determine the hemolytic activity of these species, Sabouraud dextrose sheep blood agar was used. Evaluation of the CAMP-like phenomenon carried out in the presence of , and . Tube test method with ethylenediaminetetraacetic acid-rabbit plasma was used to determine coagulase activity, and biofilm formation was assessed by the tube method in assist of Sabouraud glucose broth (8%) medium. Fisher's exact tests were used for data statistical analysis. Sixty-six of 67 (98.5%) and 3/67 (4.5%) of the species showed hemolysin and coagulase activity, respectively. Fifty-five of 67 (82.1%) of species had ability for biofilm formation, and none of the samples exhibited co-hemolytic effect in the presence of four mentioned bacteria. No significant difference was found between the level of enzyme production and biofilm formation among the isolates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100343 | PMC |
http://dx.doi.org/10.4103/jgid.jgid_93_17 | DOI Listing |
Wounds
December 2024
MediWound, Ltd, Yavne, Israel.
Background: Chronic hard-to-heal wounds, such as diabetic foot ulcers, venous leg ulcers, and pressure ulcers, present significant safety concerns, patient burdens, and challenges to health care systems globally.
Objective: To review the mechanism of action and clinical function of bromelain-based enzymatic debridement (BBD) in the context of wound care, focusing on the mechanism of action of BBD and its formulation for chronic wounds in particular.
Methods: A literature review was conducted to assess both bromelain's mechanism of action as well as clinical and preclinical studies on the use of BBD, searching the PubMed and Google Scholar databases for articles published between November 1992 and July 2024.
PLoS One
January 2025
Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
Biliary stent occlusion is due, in part, to biofilm formation by bacteria. However, previous culture-based approaches may not have revealed all microorganisms on the surface. Twenty-seven patients underwent endoscopic retrograde biliary drainage for the removal or replacement of plastic biliary stents.
View Article and Find Full Text PDFInt J Food Sci
December 2024
School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK.
Understanding biofilm rheology is crucial for industrial and domestic food safety practices. This comprehensive review addresses the knowledge gap on the rheology of biofilm. Specifically, the review explores the influence of fluid flow, shear stress, and substrate properties on the initiation, structure, and functionality of biofilms, as essential implications for food safety.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Background: Oral infectious diseases, such as dental caries, periodontitis and periapical periodontitis, are often complicated by causative bacterial biofilm formation and significantly impact human oral health and quality of life. Bacteriophage (phage) therapy has emerged as a potential alternative with successful applications in antimicrobial trials. While therapeutic use of phages has been considered as effective treatment of some infectious diseases, related research focusing on oral infectious diseases is few and lacks attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!