A common thread underlying vascular or tissue injury is the loss of plasmalemmal integrity and the passive (or even active) spillage of intracellular contents into the circulation. Purinergic nucleotides, which serve as energy shuttling moieties within cells, are among the contents released into the bloodstream, where they signal danger and trigger thrombosis and inflammation. To regain vascular homeostasis, vascular cells have evolved highly conserved mechanisms to transact the catalytic degradation of extracellular nucleotides such as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). CD39, the main endothelial ectonucleotidase which cleaves ATP and ADP, plays an essential role in ridding the bloodstream of these danger signals, thereby sustaining vascular homeostasis. Studies herein describe the upregulation of endothelial CD39 gene by steady laminar shear forces, and conversely, its downregulation under turbulent flow conditions. CD39 appears to be a critical ectonucleotidase which suppresses atherogenesis under experimental hyperlipidemic conditions in mice, and which also significantly mitigates pathologic vascular remodeling and development of pulmonary arterial hypertension in mice placed under chronic hypoxic conditions. Together, these data reveal that CD39 opposes pathologic vascular remodeling under hyperlipidemic or hypoxic conditions. CD39 can therefore be viewed as a critical vascular homeostatic regulator to sustain vascular quiescence and to protect against pathological vascular remodeling in diseases as diverse as atherosclerosis and pulmonary arterial hypertension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116580 | PMC |
Cell
December 2024
Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China; Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China. Electronic address:
Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the evolutionary trajectory and structural mechanism of proton sensing by GPR4 remain unresolved. Here, we observed a positive correlation between the optimal pH of GPR4 activity and the blood pH range across different species.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Geriatric Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China. Electronic address:
Cytokine storm is a life-threatening systemic hyper-inflammatory state caused by different etiologies, in which the bulk production of pro-inflammatory cytokines from activated macrophages has a central role. Integrated stress response (ISR) comprises several protective signaling pathways, leading to phosphorylation of eukaryotic initiation factor 2α (eIF2α) and repression of protein translation. Emerging evidence suggests that ISR induction may elicit anti-inflammatory effects.
View Article and Find Full Text PDFSci Adv
January 2025
Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA.
Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Cardiac Surgery, Peking University Third Hospital, Beijing 100191, China.
Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.
View Article and Find Full Text PDFAngiogenesis
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
Angiogenesis describes the sprouting of blood vessels from existing vasculatures and it plays a pivotal role in disease progress such as diabetes, age-related macular degeneration and cancer. However, the most widely used anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) pathway still lacked of specificity and therapeutic efficacy. To establish a method suitable for high-throughput drug screening and faithfully recapitulate the feature of in vivo angiogenesis, we generated a PECAM1-mRuby3-secNluc; ACTA2-EGFP dual reporter human pluripotent stem cell (hPSC) line and utilizing the cell line to establish a visualized and quantifiable in vitro angiogenesis model with stem cell-derived vascular organoid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!