Mitosis encompasses key molecular changes including chromatin condensation, nuclear envelope breakdown, and reduced transcription levels. Immediately after mitosis, the interphase chromatin structure is reestablished and transcription resumes. The reestablishment of the interphase chromatin is probably achieved by "bookmarking," i.e., the retention of at least partial information during mitosis. To gain a deeper understanding of the contribution of histone modifications to the mitotic bookmarking process, we merged proteomics, immunofluorescence, and ChIP-seq approaches. We focused on key histone modifications and employed HeLa-S3 cells as a model system. Generally, in spite of the general hypoacetylation observed during mitosis, we observed a global concordance between the genomic organization of histone modifications in interphase and mitosis, suggesting that the epigenomic landscape may serve as a component of the mitotic bookmarking process. Next, we investigated the nucleosome that enters nucleosome depleted regions (NDRs) during mitosis. We observed that in ∼60% of the NDRs, the entering nucleosome is distinct from the surrounding highly acetylated nucleosomes and appears to have either low levels of acetylation or high levels of phosphorylation in adjacent residues (since adjacent phosphorylation may interfere with the ability to detect acetylation). Inhibition of histone deacetylases (HDACs) by the small molecule TSA reverts this pattern, suggesting that these nucleosomes are specifically deacetylated during mitosis. Altogether, by merging multiple approaches, our study provides evidence to support a model where histone modifications may play a role in mitotic bookmarking and uncovers new insights into the deposition of nucleosomes during mitosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169886 | PMC |
http://dx.doi.org/10.1101/gr.230300.117 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016.
Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
January 2025
Department of Physiology, Pomeranian Medical University in Szczecin, Poland.
Introduction: Histone modifications are crucial epigenetic mechanisms for regulating gene expression. Histone acetyltransferases and deacetylases (HDACs) catalyze histone acetylation, a process that mediates transcription. Over recent decades, studies have demonstrated that targeting histone acetylation can be effective in cancer treatment, leading to the development and approval of several HDAC inhibitors.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA.
The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions.
View Article and Find Full Text PDFJ Hepatol
January 2025
Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China. Electronic address:
Background & Aims: Hepatocellular carcinoma (HCC) is an aggressive malignancy with few effective treatment options. H3Q5ser, a serotonin-based histone modification mediated by transglutaminase 2 (TGM2), affects diverse biological processes, such as neurodevelopment. The role of TGM2-mediated H3Q5ser in HCC progression remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!